Metamath Proof Explorer


Theorem umgredg

Description: For each edge in a multigraph, there are two distinct vertices which are connected by this edge. (Contributed by Alexander van der Vekens, 9-Dec-2017) (Revised by AV, 25-Nov-2020)

Ref Expression
Hypotheses upgredg.v V = Vtx G
upgredg.e E = Edg G
Assertion umgredg G UMGraph C E a V b V a b C = a b

Proof

Step Hyp Ref Expression
1 upgredg.v V = Vtx G
2 upgredg.e E = Edg G
3 2 eleq2i C E C Edg G
4 edgumgr G UMGraph C Edg G C 𝒫 Vtx G C = 2
5 3 4 sylan2b G UMGraph C E C 𝒫 Vtx G C = 2
6 hash2prde C 𝒫 Vtx G C = 2 a b a b C = a b
7 eleq1 C = a b C 𝒫 Vtx G a b 𝒫 Vtx G
8 prex a b V
9 8 elpw a b 𝒫 Vtx G a b Vtx G
10 vex a V
11 vex b V
12 10 11 prss a V b V a b V
13 1 sseq2i a b V a b Vtx G
14 12 13 sylbbr a b Vtx G a V b V
15 9 14 sylbi a b 𝒫 Vtx G a V b V
16 7 15 syl6bi C = a b C 𝒫 Vtx G a V b V
17 16 adantrd C = a b C 𝒫 Vtx G C = 2 a V b V
18 17 adantl a b C = a b C 𝒫 Vtx G C = 2 a V b V
19 18 imdistanri C 𝒫 Vtx G C = 2 a b C = a b a V b V a b C = a b
20 19 ex C 𝒫 Vtx G C = 2 a b C = a b a V b V a b C = a b
21 20 2eximdv C 𝒫 Vtx G C = 2 a b a b C = a b a b a V b V a b C = a b
22 6 21 mpd C 𝒫 Vtx G C = 2 a b a V b V a b C = a b
23 5 22 syl G UMGraph C E a b a V b V a b C = a b
24 r2ex a V b V a b C = a b a b a V b V a b C = a b
25 23 24 sylibr G UMGraph C E a V b V a b C = a b