Database
GRAPH THEORY
Undirected graphs
Undirected pseudographs and multigraphs
umgredg2
Next ⟩
umgrbi
Metamath Proof Explorer
Ascii
Unicode
Theorem
umgredg2
Description:
An edge of a multigraph has exactly two ends.
(Contributed by
AV
, 24-Nov-2020)
Ref
Expression
Hypotheses
isumgr.v
⊢
V
=
Vtx
⁡
G
isumgr.e
⊢
E
=
iEdg
⁡
G
Assertion
umgredg2
⊢
G
∈
UMGraph
∧
X
∈
dom
⁡
E
→
E
⁡
X
=
2
Proof
Step
Hyp
Ref
Expression
1
isumgr.v
⊢
V
=
Vtx
⁡
G
2
isumgr.e
⊢
E
=
iEdg
⁡
G
3
1
2
umgrf
⊢
G
∈
UMGraph
→
E
:
dom
⁡
E
⟶
x
∈
𝒫
V
|
x
=
2
4
3
ffvelrnda
⊢
G
∈
UMGraph
∧
X
∈
dom
⁡
E
→
E
⁡
X
∈
x
∈
𝒫
V
|
x
=
2
5
fveqeq2
⊢
x
=
E
⁡
X
→
x
=
2
↔
E
⁡
X
=
2
6
5
elrab
⊢
E
⁡
X
∈
x
∈
𝒫
V
|
x
=
2
↔
E
⁡
X
∈
𝒫
V
∧
E
⁡
X
=
2
7
6
simprbi
⊢
E
⁡
X
∈
x
∈
𝒫
V
|
x
=
2
→
E
⁡
X
=
2
8
4
7
syl
⊢
G
∈
UMGraph
∧
X
∈
dom
⁡
E
→
E
⁡
X
=
2