Metamath Proof Explorer


Theorem umgredg2

Description: An edge of a multigraph has exactly two ends. (Contributed by AV, 24-Nov-2020)

Ref Expression
Hypotheses isumgr.v V = Vtx G
isumgr.e E = iEdg G
Assertion umgredg2 G UMGraph X dom E E X = 2

Proof

Step Hyp Ref Expression
1 isumgr.v V = Vtx G
2 isumgr.e E = iEdg G
3 1 2 umgrf G UMGraph E : dom E x 𝒫 V | x = 2
4 3 ffvelrnda G UMGraph X dom E E X x 𝒫 V | x = 2
5 fveqeq2 x = E X x = 2 E X = 2
6 5 elrab E X x 𝒫 V | x = 2 E X 𝒫 V E X = 2
7 6 simprbi E X x 𝒫 V | x = 2 E X = 2
8 4 7 syl G UMGraph X dom E E X = 2