Metamath Proof Explorer


Theorem umgredgne

Description: An edge of a multigraph always connects two different vertices. Analogue of umgrnloopv resp. umgrnloop . (Contributed by AV, 27-Nov-2020)

Ref Expression
Hypothesis umgredgne.v E = Edg G
Assertion umgredgne G UMGraph M N E M N

Proof

Step Hyp Ref Expression
1 umgredgne.v E = Edg G
2 1 eleq2i M N E M N Edg G
3 edgumgr G UMGraph M N Edg G M N 𝒫 Vtx G M N = 2
4 2 3 sylan2b G UMGraph M N E M N 𝒫 Vtx G M N = 2
5 eqid M N = M N
6 5 hashprdifel M N = 2 M M N N M N M N
7 6 simp3d M N = 2 M N
8 4 7 simpl2im G UMGraph M N E M N