Metamath Proof Explorer


Theorem umgredgnlp

Description: An edge of a multigraph is not a loop. (Contributed by AV, 9-Jan-2020) (Revised by AV, 8-Jun-2021)

Ref Expression
Hypothesis umgredgnlp.e E = Edg G
Assertion umgredgnlp G UMGraph C E ¬ v C = v

Proof

Step Hyp Ref Expression
1 umgredgnlp.e E = Edg G
2 vex v V
3 hashsng v V v = 1
4 1ne2 1 2
5 4 neii ¬ 1 = 2
6 eqeq1 v = 1 v = 2 1 = 2
7 5 6 mtbiri v = 1 ¬ v = 2
8 2 3 7 mp2b ¬ v = 2
9 fveqeq2 C = v C = 2 v = 2
10 8 9 mtbiri C = v ¬ C = 2
11 10 intnand C = v ¬ C 𝒫 Vtx G C = 2
12 1 eleq2i C E C Edg G
13 edgumgr G UMGraph C Edg G C 𝒫 Vtx G C = 2
14 12 13 sylan2b G UMGraph C E C 𝒫 Vtx G C = 2
15 11 14 nsyl3 G UMGraph C E ¬ C = v
16 15 nexdv G UMGraph C E ¬ v C = v