Metamath Proof Explorer


Theorem umgredgprv

Description: In a multigraph, an edge is an unordered pair of vertices. This theorem would not hold for arbitrary hyper-/pseudographs since either M or N could be proper classes ( ( EX ) would be a loop in this case), which are no vertices of course. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Revised by AV, 11-Dec-2020)

Ref Expression
Hypotheses umgrnloopv.e E = iEdg G
umgredgprv.v V = Vtx G
Assertion umgredgprv G UMGraph X dom E E X = M N M V N V

Proof

Step Hyp Ref Expression
1 umgrnloopv.e E = iEdg G
2 umgredgprv.v V = Vtx G
3 umgruhgr G UMGraph G UHGraph
4 2 1 uhgrss G UHGraph X dom E E X V
5 3 4 sylan G UMGraph X dom E E X V
6 2 1 umgredg2 G UMGraph X dom E E X = 2
7 sseq1 E X = M N E X V M N V
8 fveqeq2 E X = M N E X = 2 M N = 2
9 7 8 anbi12d E X = M N E X V E X = 2 M N V M N = 2
10 eqid M N = M N
11 10 hashprdifel M N = 2 M M N N M N M N
12 prssg M M N N M N M V N V M N V
13 12 3adant3 M M N N M N M N M V N V M N V
14 13 biimprd M M N N M N M N M N V M V N V
15 11 14 syl M N = 2 M N V M V N V
16 15 impcom M N V M N = 2 M V N V
17 9 16 syl6bi E X = M N E X V E X = 2 M V N V
18 17 com12 E X V E X = 2 E X = M N M V N V
19 5 6 18 syl2anc G UMGraph X dom E E X = M N M V N V