Metamath Proof Explorer


Theorem umgrf

Description: The edge function of an undirected multigraph is a function into unordered pairs of vertices. Version of umgrfn without explicitly specified domain of the edge function. (Contributed by AV, 24-Nov-2020)

Ref Expression
Hypotheses isumgr.v V = Vtx G
isumgr.e E = iEdg G
Assertion umgrf G UMGraph E : dom E x 𝒫 V | x = 2

Proof

Step Hyp Ref Expression
1 isumgr.v V = Vtx G
2 isumgr.e E = iEdg G
3 1 2 isumgrs G UMGraph G UMGraph E : dom E x 𝒫 V | x = 2
4 3 ibi G UMGraph E : dom E x 𝒫 V | x = 2