Metamath Proof Explorer


Theorem umgrfn

Description: The edge function of an undirected multigraph is a function into unordered pairs of vertices. (Contributed by AV, 24-Nov-2020)

Ref Expression
Hypotheses isumgr.v V = Vtx G
isumgr.e E = iEdg G
Assertion umgrfn G UMGraph E Fn A E : A x 𝒫 V | x = 2

Proof

Step Hyp Ref Expression
1 isumgr.v V = Vtx G
2 isumgr.e E = iEdg G
3 1 2 umgrf G UMGraph E : dom E x 𝒫 V | x = 2
4 fndm E Fn A dom E = A
5 4 feq2d E Fn A E : dom E x 𝒫 V | x = 2 E : A x 𝒫 V | x = 2
6 3 5 syl5ibcom G UMGraph E Fn A E : A x 𝒫 V | x = 2
7 6 imp G UMGraph E Fn A E : A x 𝒫 V | x = 2