| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erclwwlkn.w |
|
| 2 |
|
erclwwlkn.r |
|
| 3 |
1 2
|
eclclwwlkn1 |
|
| 4 |
|
rabeq |
|
| 5 |
1 4
|
mp1i |
|
| 6 |
|
prmnn |
|
| 7 |
6
|
nnnn0d |
|
| 8 |
7
|
adantl |
|
| 9 |
1
|
eleq2i |
|
| 10 |
9
|
biimpi |
|
| 11 |
|
clwwlknscsh |
|
| 12 |
8 10 11
|
syl2an |
|
| 13 |
5 12
|
eqtrd |
|
| 14 |
13
|
eqeq2d |
|
| 15 |
6
|
adantl |
|
| 16 |
|
simpll |
|
| 17 |
|
elnnne0 |
|
| 18 |
|
eqeq1 |
|
| 19 |
18
|
eqcoms |
|
| 20 |
|
hasheq0 |
|
| 21 |
19 20
|
sylan9bbr |
|
| 22 |
21
|
necon3bid |
|
| 23 |
22
|
biimpcd |
|
| 24 |
17 23
|
simplbiim |
|
| 25 |
24
|
impcom |
|
| 26 |
|
simplr |
|
| 27 |
26
|
eqcomd |
|
| 28 |
16 25 27
|
3jca |
|
| 29 |
28
|
ex |
|
| 30 |
|
eqid |
|
| 31 |
30
|
clwwlknbp |
|
| 32 |
29 31
|
syl11 |
|
| 33 |
9 32
|
biimtrid |
|
| 34 |
15 33
|
syl |
|
| 35 |
34
|
imp |
|
| 36 |
|
scshwfzeqfzo |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
eqeq2d |
|
| 39 |
|
fveq2 |
|
| 40 |
|
simprl |
|
| 41 |
|
prmuz2 |
|
| 42 |
41
|
adantl |
|
| 43 |
42
|
adantl |
|
| 44 |
|
simplr |
|
| 45 |
|
umgr2cwwkdifex |
|
| 46 |
40 43 44 45
|
syl3anc |
|
| 47 |
|
oveq2 |
|
| 48 |
47
|
eqeq2d |
|
| 49 |
48
|
cbvrexvw |
|
| 50 |
|
eqeq1 |
|
| 51 |
|
eqcom |
|
| 52 |
50 51
|
bitrdi |
|
| 53 |
52
|
rexbidv |
|
| 54 |
49 53
|
bitrid |
|
| 55 |
54
|
cbvrabv |
|
| 56 |
55
|
cshwshashnsame |
|
| 57 |
56
|
ad2ant2rl |
|
| 58 |
46 57
|
mpd |
|
| 59 |
39 58
|
sylan9eqr |
|
| 60 |
59
|
exp41 |
|
| 61 |
60
|
adantr |
|
| 62 |
|
oveq1 |
|
| 63 |
62
|
eleq2d |
|
| 64 |
|
eleq1 |
|
| 65 |
64
|
anbi2d |
|
| 66 |
|
oveq2 |
|
| 67 |
66
|
rexeqdv |
|
| 68 |
67
|
rabbidv |
|
| 69 |
68
|
eqeq2d |
|
| 70 |
|
eqeq2 |
|
| 71 |
69 70
|
imbi12d |
|
| 72 |
65 71
|
imbi12d |
|
| 73 |
63 72
|
imbi12d |
|
| 74 |
73
|
eqcoms |
|
| 75 |
74
|
adantl |
|
| 76 |
61 75
|
mpbird |
|
| 77 |
31 76
|
mpcom |
|
| 78 |
77 1
|
eleq2s |
|
| 79 |
78
|
impcom |
|
| 80 |
38 79
|
sylbid |
|
| 81 |
14 80
|
sylbid |
|
| 82 |
81
|
rexlimdva |
|
| 83 |
82
|
com12 |
|
| 84 |
3 83
|
biimtrdi |
|
| 85 |
84
|
pm2.43i |
|
| 86 |
85
|
com12 |
|