Metamath Proof Explorer


Theorem umgrislfupgr

Description: A multigraph is a loop-free pseudograph. (Contributed by AV, 27-Jan-2021)

Ref Expression
Hypotheses umgrislfupgr.v V = Vtx G
umgrislfupgr.i I = iEdg G
Assertion umgrislfupgr G UMGraph G UPGraph I : dom I x 𝒫 V | 2 x

Proof

Step Hyp Ref Expression
1 umgrislfupgr.v V = Vtx G
2 umgrislfupgr.i I = iEdg G
3 umgrupgr G UMGraph G UPGraph
4 1 2 umgrf G UMGraph I : dom I x 𝒫 V | x = 2
5 id I : dom I x 𝒫 V | x = 2 I : dom I x 𝒫 V | x = 2
6 2re 2
7 6 leidi 2 2
8 7 a1i x = 2 2 2
9 breq2 x = 2 2 x 2 2
10 8 9 mpbird x = 2 2 x
11 10 a1i x 𝒫 V x = 2 2 x
12 11 ss2rabi x 𝒫 V | x = 2 x 𝒫 V | 2 x
13 12 a1i I : dom I x 𝒫 V | x = 2 x 𝒫 V | x = 2 x 𝒫 V | 2 x
14 5 13 fssd I : dom I x 𝒫 V | x = 2 I : dom I x 𝒫 V | 2 x
15 4 14 syl G UMGraph I : dom I x 𝒫 V | 2 x
16 3 15 jca G UMGraph G UPGraph I : dom I x 𝒫 V | 2 x
17 1 2 upgrf G UPGraph I : dom I x 𝒫 V | x 2
18 fin I : dom I x 𝒫 V | x 2 x 𝒫 V | 2 x I : dom I x 𝒫 V | x 2 I : dom I x 𝒫 V | 2 x
19 umgrislfupgrlem x 𝒫 V | x 2 x 𝒫 V | 2 x = x 𝒫 V | x = 2
20 feq3 x 𝒫 V | x 2 x 𝒫 V | 2 x = x 𝒫 V | x = 2 I : dom I x 𝒫 V | x 2 x 𝒫 V | 2 x I : dom I x 𝒫 V | x = 2
21 19 20 ax-mp I : dom I x 𝒫 V | x 2 x 𝒫 V | 2 x I : dom I x 𝒫 V | x = 2
22 18 21 sylbb1 I : dom I x 𝒫 V | x 2 I : dom I x 𝒫 V | 2 x I : dom I x 𝒫 V | x = 2
23 17 22 sylan G UPGraph I : dom I x 𝒫 V | 2 x I : dom I x 𝒫 V | x = 2
24 1 2 isumgr G UPGraph G UMGraph I : dom I x 𝒫 V | x = 2
25 24 adantr G UPGraph I : dom I x 𝒫 V | 2 x G UMGraph I : dom I x 𝒫 V | x = 2
26 23 25 mpbird G UPGraph I : dom I x 𝒫 V | 2 x G UMGraph
27 16 26 impbii G UMGraph G UPGraph I : dom I x 𝒫 V | 2 x