Metamath Proof Explorer


Theorem umgrn1cycl

Description: In a multigraph graph (with no loops!) there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017) (Revised by AV, 2-Feb-2021)

Ref Expression
Assertion umgrn1cycl G UMGraph F Cycles G P F 1

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid iEdg G = iEdg G
3 1 2 umgrislfupgr G UMGraph G UPGraph iEdg G : dom iEdg G x 𝒫 Vtx G | 2 x
4 1 2 lfgrn1cycl iEdg G : dom iEdg G x 𝒫 Vtx G | 2 x F Cycles G P F 1
5 3 4 simplbiim G UMGraph F Cycles G P F 1
6 5 imp G UMGraph F Cycles G P F 1