Metamath Proof Explorer


Theorem umgrnloop0

Description: A multigraph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 11-Dec-2020)

Ref Expression
Hypothesis umgrnloopv.e E = iEdg G
Assertion umgrnloop0 G UMGraph x dom E | E x = U =

Proof

Step Hyp Ref Expression
1 umgrnloopv.e E = iEdg G
2 neirr ¬ U U
3 1 umgrnloop G UMGraph x dom E E x = U U U U
4 2 3 mtoi G UMGraph ¬ x dom E E x = U U
5 simpr G UMGraph E x = U E x = U
6 dfsn2 U = U U
7 5 6 eqtrdi G UMGraph E x = U E x = U U
8 7 ex G UMGraph E x = U E x = U U
9 8 reximdv G UMGraph x dom E E x = U x dom E E x = U U
10 4 9 mtod G UMGraph ¬ x dom E E x = U
11 ralnex x dom E ¬ E x = U ¬ x dom E E x = U
12 10 11 sylibr G UMGraph x dom E ¬ E x = U
13 rabeq0 x dom E | E x = U = x dom E ¬ E x = U
14 12 13 sylibr G UMGraph x dom E | E x = U =