Metamath Proof Explorer


Theorem umgrnloop2

Description: A multigraph has no loops. (Contributed by AV, 27-Oct-2020) (Revised by AV, 30-Nov-2020)

Ref Expression
Assertion umgrnloop2 G UMGraph N N Edg G

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid Edg G = Edg G
3 1 2 umgrpredgv G UMGraph N N Edg G N Vtx G N Vtx G
4 3 simpld G UMGraph N N Edg G N Vtx G
5 eqid N = N
6 2 umgredgne G UMGraph N N Edg G N N
7 eqneqall N = N N N ¬ N Vtx G
8 5 6 7 mpsyl G UMGraph N N Edg G ¬ N Vtx G
9 4 8 pm2.65da G UMGraph ¬ N N Edg G
10 df-nel N N Edg G ¬ N N Edg G
11 9 10 sylibr G UMGraph N N Edg G