Metamath Proof Explorer


Theorem umgrpredgv

Description: An edge of a multigraph always connects two vertices. Analogue of umgredgprv . This theorem does not hold for arbitrary pseudographs: if either M or N is a proper class, then { M , N } e. E could still hold ( { M , N } would be either { M } or { N } , see prprc1 or prprc2 , i.e. a loop), but M e. V or N e. V would not be true. (Contributed by AV, 27-Nov-2020)

Ref Expression
Hypotheses upgredg.v V = Vtx G
upgredg.e E = Edg G
Assertion umgrpredgv G UMGraph M N E M V N V

Proof

Step Hyp Ref Expression
1 upgredg.v V = Vtx G
2 upgredg.e E = Edg G
3 2 eleq2i M N E M N Edg G
4 edgumgr G UMGraph M N Edg G M N 𝒫 Vtx G M N = 2
5 3 4 sylan2b G UMGraph M N E M N 𝒫 Vtx G M N = 2
6 eqid M N = M N
7 6 hashprdifel M N = 2 M M N N M N M N
8 1 eqcomi Vtx G = V
9 8 pweqi 𝒫 Vtx G = 𝒫 V
10 9 eleq2i M N 𝒫 Vtx G M N 𝒫 V
11 prelpw M M N N M N M V N V M N 𝒫 V
12 11 biimprd M M N N M N M N 𝒫 V M V N V
13 10 12 syl5bi M M N N M N M N 𝒫 Vtx G M V N V
14 13 3adant3 M M N N M N M N M N 𝒫 Vtx G M V N V
15 7 14 syl M N = 2 M N 𝒫 Vtx G M V N V
16 15 impcom M N 𝒫 Vtx G M N = 2 M V N V
17 5 16 syl G UMGraph M N E M V N V