Metamath Proof Explorer


Theorem umgrres1

Description: A multigraph obtained by removing one vertex and all edges incident with this vertex is a multigraph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr since the domains of the edge functions may not be compatible. (Contributed by AV, 27-Nov-2020)

Ref Expression
Hypotheses upgrres1.v V = Vtx G
upgrres1.e E = Edg G
upgrres1.f F = e E | N e
upgrres1.s S = V N I F
Assertion umgrres1 G UMGraph N V S UMGraph

Proof

Step Hyp Ref Expression
1 upgrres1.v V = Vtx G
2 upgrres1.e E = Edg G
3 upgrres1.f F = e E | N e
4 upgrres1.s S = V N I F
5 f1oi I F : F 1-1 onto F
6 f1of I F : F 1-1 onto F I F : F F
7 5 6 mp1i G UMGraph N V I F : F F
8 7 ffdmd G UMGraph N V I F : dom I F F
9 rnresi ran I F = F
10 1 2 3 umgrres1lem G UMGraph N V ran I F p 𝒫 V N | p = 2
11 9 10 eqsstrrid G UMGraph N V F p 𝒫 V N | p = 2
12 8 11 fssd G UMGraph N V I F : dom I F p 𝒫 V N | p = 2
13 opex V N I F V
14 4 13 eqeltri S V
15 1 2 3 4 upgrres1lem2 Vtx S = V N
16 15 eqcomi V N = Vtx S
17 1 2 3 4 upgrres1lem3 iEdg S = I F
18 17 eqcomi I F = iEdg S
19 16 18 isumgrs S V S UMGraph I F : dom I F p 𝒫 V N | p = 2
20 14 19 mp1i G UMGraph N V S UMGraph I F : dom I F p 𝒫 V N | p = 2
21 12 20 mpbird G UMGraph N V S UMGraph