Metamath Proof Explorer


Theorem umgrreslem

Description: Lemma for umgrres and usgrres . (Contributed by AV, 27-Nov-2020) (Revised by AV, 19-Dec-2021)

Ref Expression
Hypotheses upgrres.v V = Vtx G
upgrres.e E = iEdg G
upgrres.f F = i dom E | N E i
Assertion umgrreslem G UMGraph N V ran E F p 𝒫 V N | p = 2

Proof

Step Hyp Ref Expression
1 upgrres.v V = Vtx G
2 upgrres.e E = iEdg G
3 upgrres.f F = i dom E | N E i
4 df-ima E F = ran E F
5 fveq2 i = j E i = E j
6 neleq2 E i = E j N E i N E j
7 5 6 syl i = j N E i N E j
8 7 3 elrab2 j F j dom E N E j
9 1 2 umgrf G UMGraph E : dom E p 𝒫 V | p = 2
10 ffvelrn E : dom E p 𝒫 V | p = 2 j dom E E j p 𝒫 V | p = 2
11 fveqeq2 p = E j p = 2 E j = 2
12 11 elrab E j p 𝒫 V | p = 2 E j 𝒫 V E j = 2
13 simpll E j 𝒫 V E j = 2 N E j E j 𝒫 V
14 elpwi E j 𝒫 V E j V
15 14 adantr E j 𝒫 V E j = 2 E j V
16 15 adantr E j 𝒫 V E j = 2 N E j E j V
17 simpr E j 𝒫 V E j = 2 N E j N E j
18 elpwdifsn E j 𝒫 V E j V N E j E j 𝒫 V N
19 13 16 17 18 syl3anc E j 𝒫 V E j = 2 N E j E j 𝒫 V N
20 simpr E j 𝒫 V E j = 2 E j = 2
21 20 adantr E j 𝒫 V E j = 2 N E j E j = 2
22 11 19 21 elrabd E j 𝒫 V E j = 2 N E j E j p 𝒫 V N | p = 2
23 22 ex E j 𝒫 V E j = 2 N E j E j p 𝒫 V N | p = 2
24 23 a1d E j 𝒫 V E j = 2 N V N E j E j p 𝒫 V N | p = 2
25 12 24 sylbi E j p 𝒫 V | p = 2 N V N E j E j p 𝒫 V N | p = 2
26 10 25 syl E : dom E p 𝒫 V | p = 2 j dom E N V N E j E j p 𝒫 V N | p = 2
27 26 ex E : dom E p 𝒫 V | p = 2 j dom E N V N E j E j p 𝒫 V N | p = 2
28 27 com23 E : dom E p 𝒫 V | p = 2 N V j dom E N E j E j p 𝒫 V N | p = 2
29 9 28 syl G UMGraph N V j dom E N E j E j p 𝒫 V N | p = 2
30 29 imp4b G UMGraph N V j dom E N E j E j p 𝒫 V N | p = 2
31 8 30 syl5bi G UMGraph N V j F E j p 𝒫 V N | p = 2
32 31 ralrimiv G UMGraph N V j F E j p 𝒫 V N | p = 2
33 umgruhgr G UMGraph G UHGraph
34 2 uhgrfun G UHGraph Fun E
35 33 34 syl G UMGraph Fun E
36 35 adantr G UMGraph N V Fun E
37 3 ssrab3 F dom E
38 funimass4 Fun E F dom E E F p 𝒫 V N | p = 2 j F E j p 𝒫 V N | p = 2
39 36 37 38 sylancl G UMGraph N V E F p 𝒫 V N | p = 2 j F E j p 𝒫 V N | p = 2
40 32 39 mpbird G UMGraph N V E F p 𝒫 V N | p = 2
41 4 40 eqsstrrid G UMGraph N V ran E F p 𝒫 V N | p = 2