Metamath Proof Explorer


Theorem umgrspan

Description: A spanning subgraph S of a multigraph G is a multigraph. (Contributed by AV, 27-Nov-2020)

Ref Expression
Hypotheses uhgrspan.v V = Vtx G
uhgrspan.e E = iEdg G
uhgrspan.s φ S W
uhgrspan.q φ Vtx S = V
uhgrspan.r φ iEdg S = E A
umgrspan.g φ G UMGraph
Assertion umgrspan φ S UMGraph

Proof

Step Hyp Ref Expression
1 uhgrspan.v V = Vtx G
2 uhgrspan.e E = iEdg G
3 uhgrspan.s φ S W
4 uhgrspan.q φ Vtx S = V
5 uhgrspan.r φ iEdg S = E A
6 umgrspan.g φ G UMGraph
7 umgruhgr G UMGraph G UHGraph
8 6 7 syl φ G UHGraph
9 1 2 3 4 5 8 uhgrspansubgr φ S SubGraph G
10 subumgr G UMGraph S SubGraph G S UMGraph
11 6 9 10 syl2anc φ S UMGraph