Metamath Proof Explorer


Theorem umgrspanop

Description: A spanning subgraph of a multigraph represented by an ordered pair is a multigraph. (Contributed by AV, 27-Nov-2020)

Ref Expression
Hypotheses uhgrspanop.v V = Vtx G
uhgrspanop.e E = iEdg G
Assertion umgrspanop G UMGraph V E A UMGraph

Proof

Step Hyp Ref Expression
1 uhgrspanop.v V = Vtx G
2 uhgrspanop.e E = iEdg G
3 vex g V
4 3 a1i G UMGraph Vtx g = V iEdg g = E A g V
5 simprl G UMGraph Vtx g = V iEdg g = E A Vtx g = V
6 simprr G UMGraph Vtx g = V iEdg g = E A iEdg g = E A
7 simpl G UMGraph Vtx g = V iEdg g = E A G UMGraph
8 1 2 4 5 6 7 umgrspan G UMGraph Vtx g = V iEdg g = E A g UMGraph
9 8 ex G UMGraph Vtx g = V iEdg g = E A g UMGraph
10 9 alrimiv G UMGraph g Vtx g = V iEdg g = E A g UMGraph
11 1 fvexi V V
12 11 a1i G UMGraph V V
13 2 fvexi E V
14 13 resex E A V
15 14 a1i G UMGraph E A V
16 10 12 15 gropeld G UMGraph V E A UMGraph