Database
GRAPH THEORY
Undirected graphs
Undirected pseudographs and multigraphs
umgrupgr
Next ⟩
umgruhgr
Metamath Proof Explorer
Ascii
Unicode
Theorem
umgrupgr
Description:
An undirected multigraph is an undirected pseudograph.
(Contributed by
AV
, 25-Nov-2020)
Ref
Expression
Assertion
umgrupgr
⊢
G
∈
UMGraph
→
G
∈
UPGraph
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Vtx
⁡
G
=
Vtx
⁡
G
2
eqid
⊢
iEdg
⁡
G
=
iEdg
⁡
G
3
1
2
isumgr
⊢
G
∈
UMGraph
→
G
∈
UMGraph
↔
iEdg
⁡
G
:
dom
⁡
iEdg
⁡
G
⟶
x
∈
𝒫
Vtx
⁡
G
∖
∅
|
x
=
2
4
id
⊢
iEdg
⁡
G
:
dom
⁡
iEdg
⁡
G
⟶
x
∈
𝒫
Vtx
⁡
G
∖
∅
|
x
=
2
→
iEdg
⁡
G
:
dom
⁡
iEdg
⁡
G
⟶
x
∈
𝒫
Vtx
⁡
G
∖
∅
|
x
=
2
5
2re
⊢
2
∈
ℝ
6
5
leidi
⊢
2
≤
2
7
6
a1i
⊢
x
=
2
→
2
≤
2
8
breq1
⊢
x
=
2
→
x
≤
2
↔
2
≤
2
9
7
8
mpbird
⊢
x
=
2
→
x
≤
2
10
9
a1i
⊢
x
∈
𝒫
Vtx
⁡
G
∖
∅
→
x
=
2
→
x
≤
2
11
10
ss2rabi
⊢
x
∈
𝒫
Vtx
⁡
G
∖
∅
|
x
=
2
⊆
x
∈
𝒫
Vtx
⁡
G
∖
∅
|
x
≤
2
12
11
a1i
⊢
iEdg
⁡
G
:
dom
⁡
iEdg
⁡
G
⟶
x
∈
𝒫
Vtx
⁡
G
∖
∅
|
x
=
2
→
x
∈
𝒫
Vtx
⁡
G
∖
∅
|
x
=
2
⊆
x
∈
𝒫
Vtx
⁡
G
∖
∅
|
x
≤
2
13
4
12
fssd
⊢
iEdg
⁡
G
:
dom
⁡
iEdg
⁡
G
⟶
x
∈
𝒫
Vtx
⁡
G
∖
∅
|
x
=
2
→
iEdg
⁡
G
:
dom
⁡
iEdg
⁡
G
⟶
x
∈
𝒫
Vtx
⁡
G
∖
∅
|
x
≤
2
14
3
13
syl6bi
⊢
G
∈
UMGraph
→
G
∈
UMGraph
→
iEdg
⁡
G
:
dom
⁡
iEdg
⁡
G
⟶
x
∈
𝒫
Vtx
⁡
G
∖
∅
|
x
≤
2
15
14
pm2.43i
⊢
G
∈
UMGraph
→
iEdg
⁡
G
:
dom
⁡
iEdg
⁡
G
⟶
x
∈
𝒫
Vtx
⁡
G
∖
∅
|
x
≤
2
16
1
2
isupgr
⊢
G
∈
UMGraph
→
G
∈
UPGraph
↔
iEdg
⁡
G
:
dom
⁡
iEdg
⁡
G
⟶
x
∈
𝒫
Vtx
⁡
G
∖
∅
|
x
≤
2
17
15
16
mpbird
⊢
G
∈
UMGraph
→
G
∈
UPGraph