Metamath Proof Explorer


Theorem umgrupgr

Description: An undirected multigraph is an undirected pseudograph. (Contributed by AV, 25-Nov-2020)

Ref Expression
Assertion umgrupgr G UMGraph G UPGraph

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid iEdg G = iEdg G
3 1 2 isumgr G UMGraph G UMGraph iEdg G : dom iEdg G x 𝒫 Vtx G | x = 2
4 id iEdg G : dom iEdg G x 𝒫 Vtx G | x = 2 iEdg G : dom iEdg G x 𝒫 Vtx G | x = 2
5 2re 2
6 5 leidi 2 2
7 6 a1i x = 2 2 2
8 breq1 x = 2 x 2 2 2
9 7 8 mpbird x = 2 x 2
10 9 a1i x 𝒫 Vtx G x = 2 x 2
11 10 ss2rabi x 𝒫 Vtx G | x = 2 x 𝒫 Vtx G | x 2
12 11 a1i iEdg G : dom iEdg G x 𝒫 Vtx G | x = 2 x 𝒫 Vtx G | x = 2 x 𝒫 Vtx G | x 2
13 4 12 fssd iEdg G : dom iEdg G x 𝒫 Vtx G | x = 2 iEdg G : dom iEdg G x 𝒫 Vtx G | x 2
14 3 13 syl6bi G UMGraph G UMGraph iEdg G : dom iEdg G x 𝒫 Vtx G | x 2
15 14 pm2.43i G UMGraph iEdg G : dom iEdg G x 𝒫 Vtx G | x 2
16 1 2 isupgr G UMGraph G UPGraph iEdg G : dom iEdg G x 𝒫 Vtx G | x 2
17 15 16 mpbird G UMGraph G UPGraph