Metamath Proof Explorer


Theorem umgrvad2edg

Description: If a vertex is adjacent to two different vertices in a multigraph, there are more than one edges starting at this vertex, analogous to usgr2edg . (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 9-Jan-2020) (Revised by AV, 8-Jun-2021)

Ref Expression
Hypothesis umgrvad2edg.e E = Edg G
Assertion umgrvad2edg G UMGraph A B N A E B N E x E y E x y N x N y

Proof

Step Hyp Ref Expression
1 umgrvad2edg.e E = Edg G
2 simpl N A E B N E N A E
3 simpr N A E B N E B N E
4 eqid Vtx G = Vtx G
5 4 1 umgrpredgv G UMGraph N A E N Vtx G A Vtx G
6 5 ex G UMGraph N A E N Vtx G A Vtx G
7 4 1 umgrpredgv G UMGraph B N E B Vtx G N Vtx G
8 7 ex G UMGraph B N E B Vtx G N Vtx G
9 6 8 anim12d G UMGraph N A E B N E N Vtx G A Vtx G B Vtx G N Vtx G
10 9 adantr G UMGraph A B N A E B N E N Vtx G A Vtx G B Vtx G N Vtx G
11 10 imp G UMGraph A B N A E B N E N Vtx G A Vtx G B Vtx G N Vtx G
12 simplr G UMGraph A B N A E B N E A B
13 1 umgredgne G UMGraph N A E N A
14 13 necomd G UMGraph N A E A N
15 14 ad2ant2r G UMGraph A B N A E B N E A N
16 12 15 jca G UMGraph A B N A E B N E A B A N
17 16 olcd G UMGraph A B N A E B N E N B N N A B A N
18 prneimg N Vtx G A Vtx G B Vtx G N Vtx G N B N N A B A N N A B N
19 18 imp N Vtx G A Vtx G B Vtx G N Vtx G N B N N A B A N N A B N
20 prid1g N Vtx G N N A
21 20 ad3antrrr N Vtx G A Vtx G B Vtx G N Vtx G N B N N A B A N N N A
22 prid2g N Vtx G N B N
23 22 ad3antrrr N Vtx G A Vtx G B Vtx G N Vtx G N B N N A B A N N B N
24 19 21 23 3jca N Vtx G A Vtx G B Vtx G N Vtx G N B N N A B A N N A B N N N A N B N
25 11 17 24 syl2anc G UMGraph A B N A E B N E N A B N N N A N B N
26 neeq1 x = N A x y N A y
27 eleq2 x = N A N x N N A
28 26 27 3anbi12d x = N A x y N x N y N A y N N A N y
29 neeq2 y = B N N A y N A B N
30 eleq2 y = B N N y N B N
31 29 30 3anbi13d y = B N N A y N N A N y N A B N N N A N B N
32 28 31 rspc2ev N A E B N E N A B N N N A N B N x E y E x y N x N y
33 2 3 25 32 syl2an23an G UMGraph A B N A E B N E x E y E x y N x N y