Metamath Proof Explorer


Theorem umgrwlknloop

Description: In a multigraph, each walk has no loops! (Contributed by Alexander van der Vekens, 7-Nov-2017) (Revised by AV, 3-Jan-2021)

Ref Expression
Assertion umgrwlknloop G UMGraph F Walks G P k 0 ..^ F P k P k + 1

Proof

Step Hyp Ref Expression
1 umgrupgr G UMGraph G UPGraph
2 eqid Edg G = Edg G
3 2 upgrwlkvtxedg G UPGraph F Walks G P k 0 ..^ F P k P k + 1 Edg G
4 1 3 sylan G UMGraph F Walks G P k 0 ..^ F P k P k + 1 Edg G
5 2 umgredgne G UMGraph P k P k + 1 Edg G P k P k + 1
6 5 ex G UMGraph P k P k + 1 Edg G P k P k + 1
7 6 adantr G UMGraph F Walks G P P k P k + 1 Edg G P k P k + 1
8 7 ralimdv G UMGraph F Walks G P k 0 ..^ F P k P k + 1 Edg G k 0 ..^ F P k P k + 1
9 4 8 mpd G UMGraph F Walks G P k 0 ..^ F P k P k + 1