Metamath Proof Explorer


Theorem un00

Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004)

Ref Expression
Assertion un00 A=B=AB=

Proof

Step Hyp Ref Expression
1 uneq12 A=B=AB=
2 un0 =
3 1 2 eqtrdi A=B=AB=
4 ssun1 AAB
5 sseq2 AB=AABA
6 4 5 mpbii AB=A
7 ss0b AA=
8 6 7 sylib AB=A=
9 ssun2 BAB
10 sseq2 AB=BABB
11 9 10 mpbii AB=B
12 ss0b BB=
13 11 12 sylib AB=B=
14 8 13 jca AB=A=B=
15 3 14 impbii A=B=AB=