Step |
Hyp |
Ref |
Expression |
1 |
|
un0addcl.1 |
|
2 |
|
un0addcl.2 |
|
3 |
|
un0addcl.3 |
|
4 |
2
|
eleq2i |
|
5 |
|
elun |
|
6 |
4 5
|
bitri |
|
7 |
2
|
eleq2i |
|
8 |
|
elun |
|
9 |
7 8
|
bitri |
|
10 |
|
ssun1 |
|
11 |
10 2
|
sseqtrri |
|
12 |
11 3
|
sselid |
|
13 |
12
|
expr |
|
14 |
1
|
sselda |
|
15 |
14
|
addid2d |
|
16 |
11
|
a1i |
|
17 |
16
|
sselda |
|
18 |
15 17
|
eqeltrd |
|
19 |
|
elsni |
|
20 |
19
|
oveq1d |
|
21 |
20
|
eleq1d |
|
22 |
18 21
|
syl5ibrcom |
|
23 |
22
|
impancom |
|
24 |
13 23
|
jaodan |
|
25 |
9 24
|
sylan2b |
|
26 |
|
0cnd |
|
27 |
26
|
snssd |
|
28 |
1 27
|
unssd |
|
29 |
2 28
|
eqsstrid |
|
30 |
29
|
sselda |
|
31 |
30
|
addid1d |
|
32 |
|
simpr |
|
33 |
31 32
|
eqeltrd |
|
34 |
|
elsni |
|
35 |
34
|
oveq2d |
|
36 |
35
|
eleq1d |
|
37 |
33 36
|
syl5ibrcom |
|
38 |
25 37
|
jaod |
|
39 |
6 38
|
syl5bi |
|
40 |
39
|
impr |
|