Metamath Proof Explorer


Theorem un0addcl

Description: If S is closed under addition, then so is S u. { 0 } . (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Hypotheses un0addcl.1 φ S
un0addcl.2 T = S 0
un0addcl.3 φ M S N S M + N S
Assertion un0addcl φ M T N T M + N T

Proof

Step Hyp Ref Expression
1 un0addcl.1 φ S
2 un0addcl.2 T = S 0
3 un0addcl.3 φ M S N S M + N S
4 2 eleq2i N T N S 0
5 elun N S 0 N S N 0
6 4 5 bitri N T N S N 0
7 2 eleq2i M T M S 0
8 elun M S 0 M S M 0
9 7 8 bitri M T M S M 0
10 ssun1 S S 0
11 10 2 sseqtrri S T
12 11 3 sselid φ M S N S M + N T
13 12 expr φ M S N S M + N T
14 1 sselda φ N S N
15 14 addid2d φ N S 0 + N = N
16 11 a1i φ S T
17 16 sselda φ N S N T
18 15 17 eqeltrd φ N S 0 + N T
19 elsni M 0 M = 0
20 19 oveq1d M 0 M + N = 0 + N
21 20 eleq1d M 0 M + N T 0 + N T
22 18 21 syl5ibrcom φ N S M 0 M + N T
23 22 impancom φ M 0 N S M + N T
24 13 23 jaodan φ M S M 0 N S M + N T
25 9 24 sylan2b φ M T N S M + N T
26 0cnd φ 0
27 26 snssd φ 0
28 1 27 unssd φ S 0
29 2 28 eqsstrid φ T
30 29 sselda φ M T M
31 30 addid1d φ M T M + 0 = M
32 simpr φ M T M T
33 31 32 eqeltrd φ M T M + 0 T
34 elsni N 0 N = 0
35 34 oveq2d N 0 M + N = M + 0
36 35 eleq1d N 0 M + N T M + 0 T
37 33 36 syl5ibrcom φ M T N 0 M + N T
38 25 37 jaod φ M T N S N 0 M + N T
39 6 38 syl5bi φ M T N T M + N T
40 39 impr φ M T N T M + N T