Step |
Hyp |
Ref |
Expression |
1 |
|
un0addcl.1 |
|
2 |
|
un0addcl.2 |
|
3 |
|
un0mulcl.3 |
|
4 |
2
|
eleq2i |
|
5 |
|
elun |
|
6 |
4 5
|
bitri |
|
7 |
2
|
eleq2i |
|
8 |
|
elun |
|
9 |
7 8
|
bitri |
|
10 |
|
ssun1 |
|
11 |
10 2
|
sseqtrri |
|
12 |
11 3
|
sselid |
|
13 |
12
|
expr |
|
14 |
1
|
sselda |
|
15 |
14
|
mul02d |
|
16 |
|
ssun2 |
|
17 |
16 2
|
sseqtrri |
|
18 |
|
c0ex |
|
19 |
18
|
snss |
|
20 |
17 19
|
mpbir |
|
21 |
15 20
|
eqeltrdi |
|
22 |
|
elsni |
|
23 |
22
|
oveq1d |
|
24 |
23
|
eleq1d |
|
25 |
21 24
|
syl5ibrcom |
|
26 |
25
|
impancom |
|
27 |
13 26
|
jaodan |
|
28 |
9 27
|
sylan2b |
|
29 |
|
0cnd |
|
30 |
29
|
snssd |
|
31 |
1 30
|
unssd |
|
32 |
2 31
|
eqsstrid |
|
33 |
32
|
sselda |
|
34 |
33
|
mul01d |
|
35 |
34 20
|
eqeltrdi |
|
36 |
|
elsni |
|
37 |
36
|
oveq2d |
|
38 |
37
|
eleq1d |
|
39 |
35 38
|
syl5ibrcom |
|
40 |
28 39
|
jaod |
|
41 |
6 40
|
syl5bi |
|
42 |
41
|
impr |
|