Metamath Proof Explorer


Theorem un2122

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis un2122.1 φ ψ ψ ψ χ
Assertion un2122 φ ψ χ

Proof

Step Hyp Ref Expression
1 un2122.1 φ ψ ψ ψ χ
2 3anass φ ψ ψ ψ φ ψ ψ ψ
3 anandir φ ψ ψ φ ψ ψ ψ
4 ancom φ ψ ψ ψ φ ψ
5 anabs7 ψ φ ψ φ ψ
6 4 5 bitri φ ψ ψ φ ψ
7 3 6 bitr3i φ ψ ψ ψ φ ψ
8 2 7 bitri φ ψ ψ ψ φ ψ
9 8 1 sylbir φ ψ χ