Metamath Proof Explorer


Theorem unab

Description: Union of two class abstractions. (Contributed by NM, 29-Sep-2002) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion unab x | φ x | ψ = x | φ ψ

Proof

Step Hyp Ref Expression
1 sbor y x φ ψ y x φ y x ψ
2 df-clab y x | φ ψ y x φ ψ
3 df-clab y x | φ y x φ
4 df-clab y x | ψ y x ψ
5 3 4 orbi12i y x | φ y x | ψ y x φ y x ψ
6 1 2 5 3bitr4ri y x | φ y x | ψ y x | φ ψ
7 6 uneqri x | φ x | ψ = x | φ ψ