Metamath Proof Explorer


Theorem unabw

Description: Union of two class abstractions. Version of unab using implicit substitution, which does not require ax-8 , ax-10 , ax-12 . (Contributed by Gino Giotto, 15-Oct-2024)

Ref Expression
Hypotheses unabw.1 x = y φ χ
unabw.2 x = y ψ θ
Assertion unabw x | φ x | ψ = y | χ θ

Proof

Step Hyp Ref Expression
1 unabw.1 x = y φ χ
2 unabw.2 x = y ψ θ
3 df-un x | φ x | ψ = y | y x | φ y x | ψ
4 df-clab y x | φ y x φ
5 1 sbievw y x φ χ
6 4 5 bitri y x | φ χ
7 df-clab y x | ψ y x ψ
8 2 sbievw y x ψ θ
9 7 8 bitri y x | ψ θ
10 6 9 orbi12i y x | φ y x | ψ χ θ
11 10 abbii y | y x | φ y x | ψ = y | χ θ
12 3 11 eqtri x | φ x | ψ = y | χ θ