Metamath Proof Explorer


Theorem unass

Description: Associative law for union of classes. Exercise 8 of TakeutiZaring p. 17. (Contributed by NM, 3-May-1994) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion unass A B C = A B C

Proof

Step Hyp Ref Expression
1 elun x A B C x A x B C
2 elun x B C x B x C
3 2 orbi2i x A x B C x A x B x C
4 elun x A B x A x B
5 4 orbi1i x A B x C x A x B x C
6 orass x A x B x C x A x B x C
7 5 6 bitr2i x A x B x C x A B x C
8 1 3 7 3bitrri x A B x C x A B C
9 8 uneqri A B C = A B C