Metamath Proof Explorer


Theorem unbdqndv2lem2

Description: Lemma for unbdqndv2 . (Contributed by Asger C. Ipsen, 12-May-2021)

Ref Expression
Hypotheses unbdqndv2lem2.g G = z X A F z F A z A
unbdqndv2lem2.w W = if B V U F U F A U V
unbdqndv2lem2.x φ X
unbdqndv2lem2.f φ F : X
unbdqndv2lem2.a φ A X
unbdqndv2lem2.b φ B +
unbdqndv2lem2.d φ D +
unbdqndv2lem2.u φ U X
unbdqndv2lem2.v φ V X
unbdqndv2lem2.1 φ U V
unbdqndv2lem2.2 φ U A
unbdqndv2lem2.3 φ A V
unbdqndv2lem2.4 φ V U < D
unbdqndv2lem2.5 φ 2 B F V F U V U
Assertion unbdqndv2lem2 φ W X A W A < D B G W

Proof

Step Hyp Ref Expression
1 unbdqndv2lem2.g G = z X A F z F A z A
2 unbdqndv2lem2.w W = if B V U F U F A U V
3 unbdqndv2lem2.x φ X
4 unbdqndv2lem2.f φ F : X
5 unbdqndv2lem2.a φ A X
6 unbdqndv2lem2.b φ B +
7 unbdqndv2lem2.d φ D +
8 unbdqndv2lem2.u φ U X
9 unbdqndv2lem2.v φ V X
10 unbdqndv2lem2.1 φ U V
11 unbdqndv2lem2.2 φ U A
12 unbdqndv2lem2.3 φ A V
13 unbdqndv2lem2.4 φ V U < D
14 unbdqndv2lem2.5 φ 2 B F V F U V U
15 2 a1i φ B V U F U F A W = if B V U F U F A U V
16 iftrue B V U F U F A if B V U F U F A U V = U
17 16 adantl φ B V U F U F A if B V U F U F A U V = U
18 15 17 eqtrd φ B V U F U F A W = U
19 8 adantr φ B V U F U F A U X
20 simplr φ B V U F U F A U = A B V U F U F A
21 fveq2 U = A F U = F A
22 21 eqcomd U = A F A = F U
23 22 oveq2d U = A F U F A = F U F U
24 23 fveq2d U = A F U F A = F U F U
25 24 adantl φ U = A F U F A = F U F U
26 4 8 ffvelrnd φ F U
27 26 subidd φ F U F U = 0
28 27 fveq2d φ F U F U = 0
29 28 adantr φ U = A F U F U = 0
30 abs0 0 = 0
31 30 a1i φ U = A 0 = 0
32 29 31 eqtrd φ U = A F U F U = 0
33 25 32 eqtrd φ U = A F U F A = 0
34 33 adantlr φ B V U F U F A U = A F U F A = 0
35 20 34 breqtrd φ B V U F U F A U = A B V U 0
36 6 rpred φ B
37 3 9 sseldd φ V
38 3 8 sseldd φ U
39 37 38 resubcld φ V U
40 6 rpgt0d φ 0 < B
41 3 5 sseldd φ A
42 38 41 37 11 12 letrd φ U V
43 10 necomd φ V U
44 38 37 42 43 leneltd φ U < V
45 38 37 posdifd φ U < V 0 < V U
46 44 45 mpbid φ 0 < V U
47 36 39 40 46 mulgt0d φ 0 < B V U
48 0red φ 0
49 36 39 remulcld φ B V U
50 48 49 ltnled φ 0 < B V U ¬ B V U 0
51 47 50 mpbid φ ¬ B V U 0
52 51 adantr φ B V U F U F A ¬ B V U 0
53 52 adantr φ B V U F U F A U = A ¬ B V U 0
54 35 53 pm2.65da φ B V U F U F A ¬ U = A
55 54 neqned φ B V U F U F A U A
56 19 55 jca φ B V U F U F A U X U A
57 eldifsn U X A U X U A
58 56 57 sylibr φ B V U F U F A U X A
59 18 58 eqeltrd φ B V U F U F A W X A
60 18 oveq1d φ B V U F U F A W A = U A
61 60 fveq2d φ B V U F U F A W A = U A
62 38 41 11 abssuble0d φ U A = A U
63 62 adantr φ B V U F U F A U A = A U
64 61 63 eqtrd φ B V U F U F A W A = A U
65 41 38 resubcld φ A U
66 7 rpred φ D
67 41 37 38 12 lesub1dd φ A U V U
68 65 39 66 67 13 lelttrd φ A U < D
69 68 adantr φ B V U F U F A A U < D
70 64 69 eqbrtrd φ B V U F U F A W A < D
71 36 65 remulcld φ B A U
72 71 adantr φ B V U F U F A B A U
73 49 adantr φ B V U F U F A B V U
74 4 5 ffvelrnd φ F A
75 26 74 subcld φ F U F A
76 75 abscld φ F U F A
77 76 adantr φ B V U F U F A F U F A
78 48 36 40 ltled φ 0 B
79 65 39 36 78 67 lemul2ad φ B A U B V U
80 79 adantr φ B V U F U F A B A U B V U
81 simpr φ B V U F U F A B V U F U F A
82 72 73 77 80 81 letrd φ B V U F U F A B A U F U F A
83 36 adantr φ B V U F U F A B
84 65 adantr φ B V U F U F A A U
85 11 adantr φ B V U F U F A U A
86 55 necomd φ B V U F U F A A U
87 85 86 jca φ B V U F U F A U A A U
88 38 41 ltlend φ U < A U A A U
89 88 adantr φ B V U F U F A U < A U A A U
90 87 89 mpbird φ B V U F U F A U < A
91 38 41 posdifd φ U < A 0 < A U
92 91 adantr φ B V U F U F A U < A 0 < A U
93 90 92 mpbid φ B V U F U F A 0 < A U
94 84 93 jca φ B V U F U F A A U 0 < A U
95 elrp A U + A U 0 < A U
96 94 95 sylibr φ B V U F U F A A U +
97 83 77 96 lemuldivd φ B V U F U F A B A U F U F A B F U F A A U
98 82 97 mpbid φ B V U F U F A B F U F A A U
99 18 fveq2d φ B V U F U F A G W = G U
100 fveq2 z = U F z = F U
101 100 oveq1d z = U F z F A = F U F A
102 oveq1 z = U z A = U A
103 101 102 oveq12d z = U F z F A z A = F U F A U A
104 ovexd φ B V U F U F A F U F A U A V
105 1 103 58 104 fvmptd3 φ B V U F U F A G U = F U F A U A
106 99 105 eqtrd φ B V U F U F A G W = F U F A U A
107 106 fveq2d φ B V U F U F A G W = F U F A U A
108 75 adantr φ B V U F U F A F U F A
109 38 recnd φ U
110 41 recnd φ A
111 109 110 subcld φ U A
112 111 adantr φ B V U F U F A U A
113 109 adantr φ B V U F U F A U
114 110 adantr φ B V U F U F A A
115 113 114 55 subne0d φ B V U F U F A U A 0
116 108 112 115 absdivd φ B V U F U F A F U F A U A = F U F A U A
117 63 oveq2d φ B V U F U F A F U F A U A = F U F A A U
118 116 117 eqtrd φ B V U F U F A F U F A U A = F U F A A U
119 107 118 eqtrd φ B V U F U F A G W = F U F A A U
120 119 eqcomd φ B V U F U F A F U F A A U = G W
121 98 120 breqtrd φ B V U F U F A B G W
122 70 121 jca φ B V U F U F A W A < D B G W
123 59 122 jca φ B V U F U F A W X A W A < D B G W
124 2 a1i φ ¬ B V U F U F A W = if B V U F U F A U V
125 simpr φ ¬ B V U F U F A ¬ B V U F U F A
126 125 iffalsed φ ¬ B V U F U F A if B V U F U F A U V = V
127 124 126 eqtrd φ ¬ B V U F U F A W = V
128 9 adantr φ ¬ B V U F U F A V X
129 38 37 42 abssubge0d φ V U = V U
130 129 oveq2d φ B V U = B V U
131 130 breq1d φ B V U F U F A B V U F U F A
132 131 adantr φ ¬ B V U F U F A B V U F U F A B V U F U F A
133 125 132 mtbird φ ¬ B V U F U F A ¬ B V U F U F A
134 4 9 ffvelrnd φ F V
135 39 recnd φ V U
136 48 46 gtned φ V U 0
137 134 26 subcld φ F V F U
138 137 135 136 absdivd φ F V F U V U = F V F U V U
139 129 oveq2d φ F V F U V U = F V F U V U
140 138 139 eqtrd φ F V F U V U = F V F U V U
141 140 eqcomd φ F V F U V U = F V F U V U
142 14 141 breqtrd φ 2 B F V F U V U
143 134 26 74 135 6 136 142 unbdqndv2lem1 φ B V U F V F A B V U F U F A
144 143 adantr φ ¬ B V U F U F A B V U F V F A B V U F U F A
145 orel2 ¬ B V U F U F A B V U F V F A B V U F U F A B V U F V F A
146 133 144 145 sylc φ ¬ B V U F U F A B V U F V F A
147 146 adantr φ ¬ B V U F U F A V = A B V U F V F A
148 fveq2 V = A F V = F A
149 148 oveq1d V = A F V F A = F A F A
150 149 adantl φ V = A F V F A = F A F A
151 74 subidd φ F A F A = 0
152 151 adantr φ V = A F A F A = 0
153 150 152 eqtrd φ V = A F V F A = 0
154 153 fveq2d φ V = A F V F A = 0
155 30 a1i φ V = A 0 = 0
156 154 155 eqtrd φ V = A F V F A = 0
157 156 adantlr φ ¬ B V U F U F A V = A F V F A = 0
158 147 157 breqtrd φ ¬ B V U F U F A V = A B V U 0
159 130 breq1d φ B V U 0 B V U 0
160 51 159 mtbird φ ¬ B V U 0
161 160 adantr φ ¬ B V U F U F A ¬ B V U 0
162 161 adantr φ ¬ B V U F U F A V = A ¬ B V U 0
163 158 162 pm2.65da φ ¬ B V U F U F A ¬ V = A
164 163 neqned φ ¬ B V U F U F A V A
165 128 164 jca φ ¬ B V U F U F A V X V A
166 eldifsn V X A V X V A
167 165 166 sylibr φ ¬ B V U F U F A V X A
168 127 167 eqeltrd φ ¬ B V U F U F A W X A
169 127 oveq1d φ ¬ B V U F U F A W A = V A
170 169 fveq2d φ ¬ B V U F U F A W A = V A
171 41 37 12 abssubge0d φ V A = V A
172 171 adantr φ ¬ B V U F U F A V A = V A
173 170 172 eqtrd φ ¬ B V U F U F A W A = V A
174 37 41 resubcld φ V A
175 38 41 37 11 lesub2dd φ V A V U
176 174 39 66 175 13 lelttrd φ V A < D
177 176 adantr φ ¬ B V U F U F A V A < D
178 173 177 eqbrtrd φ ¬ B V U F U F A W A < D
179 171 174 eqeltrd φ V A
180 36 179 remulcld φ B V A
181 180 adantr φ ¬ B V U F U F A B V A
182 130 49 eqeltrd φ B V U
183 182 adantr φ ¬ B V U F U F A B V U
184 134 74 subcld φ F V F A
185 184 abscld φ F V F A
186 185 adantr φ ¬ B V U F U F A F V F A
187 129 39 eqeltrd φ V U
188 175 171 129 3brtr4d φ V A V U
189 179 187 36 78 188 lemul2ad φ B V A B V U
190 189 adantr φ ¬ B V U F U F A B V A B V U
191 181 183 186 190 146 letrd φ ¬ B V U F U F A B V A F V F A
192 36 adantr φ ¬ B V U F U F A B
193 174 recnd φ V A
194 193 adantr φ ¬ B V U F U F A V A
195 37 recnd φ V
196 195 adantr φ ¬ B V U F U F A V
197 110 adantr φ ¬ B V U F U F A A
198 196 197 164 subne0d φ ¬ B V U F U F A V A 0
199 194 198 absrpcld φ ¬ B V U F U F A V A +
200 192 186 199 lemuldivd φ ¬ B V U F U F A B V A F V F A B F V F A V A
201 191 200 mpbid φ ¬ B V U F U F A B F V F A V A
202 127 fveq2d φ ¬ B V U F U F A G W = G V
203 fveq2 z = V F z = F V
204 203 oveq1d z = V F z F A = F V F A
205 oveq1 z = V z A = V A
206 204 205 oveq12d z = V F z F A z A = F V F A V A
207 ovexd φ ¬ B V U F U F A F V F A V A V
208 1 206 167 207 fvmptd3 φ ¬ B V U F U F A G V = F V F A V A
209 202 208 eqtrd φ ¬ B V U F U F A G W = F V F A V A
210 209 fveq2d φ ¬ B V U F U F A G W = F V F A V A
211 184 adantr φ ¬ B V U F U F A F V F A
212 211 194 198 absdivd φ ¬ B V U F U F A F V F A V A = F V F A V A
213 210 212 eqtrd φ ¬ B V U F U F A G W = F V F A V A
214 213 eqcomd φ ¬ B V U F U F A F V F A V A = G W
215 201 214 breqtrd φ ¬ B V U F U F A B G W
216 178 215 jca φ ¬ B V U F U F A W A < D B G W
217 168 216 jca φ ¬ B V U F U F A W X A W A < D B G W
218 123 217 pm2.61dan φ W X A W A < D B G W