| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unblem.2 |  | 
						
							| 2 |  | fveq2 |  | 
						
							| 3 | 2 | eleq1d |  | 
						
							| 4 |  | fveq2 |  | 
						
							| 5 | 4 | eleq1d |  | 
						
							| 6 |  | fveq2 |  | 
						
							| 7 | 6 | eleq1d |  | 
						
							| 8 |  | omsson |  | 
						
							| 9 |  | sstr |  | 
						
							| 10 | 8 9 | mpan2 |  | 
						
							| 11 |  | peano1 |  | 
						
							| 12 |  | eleq1 |  | 
						
							| 13 | 12 | rexbidv |  | 
						
							| 14 | 13 | rspcv |  | 
						
							| 15 | 11 14 | ax-mp |  | 
						
							| 16 |  | df-rex |  | 
						
							| 17 | 15 16 | sylib |  | 
						
							| 18 |  | exsimpl |  | 
						
							| 19 | 17 18 | syl |  | 
						
							| 20 |  | n0 |  | 
						
							| 21 | 19 20 | sylibr |  | 
						
							| 22 |  | onint |  | 
						
							| 23 | 10 21 22 | syl2an |  | 
						
							| 24 | 1 | fveq1i |  | 
						
							| 25 |  | fr0g |  | 
						
							| 26 | 24 25 | eqtr2id |  | 
						
							| 27 | 26 | eleq1d |  | 
						
							| 28 | 27 | ibi |  | 
						
							| 29 | 23 28 | syl |  | 
						
							| 30 |  | unblem1 |  | 
						
							| 31 |  | suceq |  | 
						
							| 32 | 31 | difeq2d |  | 
						
							| 33 | 32 | inteqd |  | 
						
							| 34 |  | suceq |  | 
						
							| 35 | 34 | difeq2d |  | 
						
							| 36 | 35 | inteqd |  | 
						
							| 37 | 1 33 36 | frsucmpt2 |  | 
						
							| 38 | 37 | eqcomd |  | 
						
							| 39 | 38 | eleq1d |  | 
						
							| 40 | 39 | ex |  | 
						
							| 41 | 40 | ibd |  | 
						
							| 42 | 30 41 | syl5 |  | 
						
							| 43 | 42 | expd |  | 
						
							| 44 | 3 5 7 29 43 | finds2 |  | 
						
							| 45 | 44 | com12 |  |