Metamath Proof Explorer


Theorem unblem3

Description: Lemma for unbnn . The value of the function F is less than its value at a successor. (Contributed by NM, 3-Dec-2003)

Ref Expression
Hypothesis unblem.2 F = rec x V A suc x A ω
Assertion unblem3 A ω w ω v A w v z ω F z F suc z

Proof

Step Hyp Ref Expression
1 unblem.2 F = rec x V A suc x A ω
2 1 unblem2 A ω w ω v A w v z ω F z A
3 2 imp A ω w ω v A w v z ω F z A
4 omsson ω On
5 sstr A ω ω On A On
6 4 5 mpan2 A ω A On
7 ssel A On F z A F z On
8 7 anc2li A On F z A A On F z On
9 6 8 syl A ω F z A A On F z On
10 9 ad2antrr A ω w ω v A w v z ω F z A A On F z On
11 3 10 mpd A ω w ω v A w v z ω A On F z On
12 onmindif A On F z On F z A suc F z
13 11 12 syl A ω w ω v A w v z ω F z A suc F z
14 unblem1 A ω w ω v A w v F z A A suc F z A
15 14 ex A ω w ω v A w v F z A A suc F z A
16 2 15 syld A ω w ω v A w v z ω A suc F z A
17 suceq y = x suc y = suc x
18 17 difeq2d y = x A suc y = A suc x
19 18 inteqd y = x A suc y = A suc x
20 suceq y = F z suc y = suc F z
21 20 difeq2d y = F z A suc y = A suc F z
22 21 inteqd y = F z A suc y = A suc F z
23 1 19 22 frsucmpt2 z ω A suc F z A F suc z = A suc F z
24 23 ex z ω A suc F z A F suc z = A suc F z
25 16 24 sylcom A ω w ω v A w v z ω F suc z = A suc F z
26 25 imp A ω w ω v A w v z ω F suc z = A suc F z
27 13 26 eleqtrrd A ω w ω v A w v z ω F z F suc z
28 27 ex A ω w ω v A w v z ω F z F suc z