Metamath Proof Explorer


Theorem unblem4

Description: Lemma for unbnn . The function F maps the set of natural numbers one-to-one to the set of unbounded natural numbers A . (Contributed by NM, 3-Dec-2003)

Ref Expression
Hypothesis unblem.2 F = rec x V A suc x A ω
Assertion unblem4 A ω w ω v A w v F : ω 1-1 A

Proof

Step Hyp Ref Expression
1 unblem.2 F = rec x V A suc x A ω
2 omsson ω On
3 sstr A ω ω On A On
4 2 3 mpan2 A ω A On
5 4 adantr A ω w ω v A w v A On
6 frfnom rec x V A suc x A ω Fn ω
7 1 fneq1i F Fn ω rec x V A suc x A ω Fn ω
8 6 7 mpbir F Fn ω
9 1 unblem2 A ω w ω v A w v z ω F z A
10 9 ralrimiv A ω w ω v A w v z ω F z A
11 ffnfv F : ω A F Fn ω z ω F z A
12 11 biimpri F Fn ω z ω F z A F : ω A
13 8 10 12 sylancr A ω w ω v A w v F : ω A
14 1 unblem3 A ω w ω v A w v z ω F z F suc z
15 14 ralrimiv A ω w ω v A w v z ω F z F suc z
16 omsmo A On F : ω A z ω F z F suc z F : ω 1-1 A
17 5 13 15 16 syl21anc A ω w ω v A w v F : ω 1-1 A