Metamath Proof Explorer


Theorem unbnn

Description: Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of Suppes p. 151. See unbnn3 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003)

Ref Expression
Assertion unbnn ω V A ω x ω y A x y A ω

Proof

Step Hyp Ref Expression
1 ssdomg ω V A ω A ω
2 1 imp ω V A ω A ω
3 2 3adant3 ω V A ω x ω y A x y A ω
4 simp1 ω V A ω x ω y A x y ω V
5 ssexg A ω ω V A V
6 5 ancoms ω V A ω A V
7 6 3adant3 ω V A ω x ω y A x y A V
8 eqid rec z V A suc z A ω = rec z V A suc z A ω
9 8 unblem4 A ω x ω y A x y rec z V A suc z A ω : ω 1-1 A
10 9 3adant1 ω V A ω x ω y A x y rec z V A suc z A ω : ω 1-1 A
11 f1dom2g ω V A V rec z V A suc z A ω : ω 1-1 A ω A
12 4 7 10 11 syl3anc ω V A ω x ω y A x y ω A
13 sbth A ω ω A A ω
14 3 12 13 syl2anc ω V A ω x ω y A x y A ω