Metamath Proof Explorer


Theorem uncld

Description: The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of Munkres p. 93. (Contributed by NM, 5-Oct-2006)

Ref Expression
Assertion uncld A Clsd J B Clsd J A B Clsd J

Proof

Step Hyp Ref Expression
1 difundi J A B = J A J B
2 cldrcl A Clsd J J Top
3 eqid J = J
4 3 cldopn A Clsd J J A J
5 3 cldopn B Clsd J J B J
6 inopn J Top J A J J B J J A J B J
7 2 4 5 6 syl2an3an A Clsd J B Clsd J J A J B J
8 1 7 eqeltrid A Clsd J B Clsd J J A B J
9 3 cldss A Clsd J A J
10 3 cldss B Clsd J B J
11 9 10 anim12i A Clsd J B Clsd J A J B J
12 unss A J B J A B J
13 11 12 sylib A Clsd J B Clsd J A B J
14 3 iscld2 J Top A B J A B Clsd J J A B J
15 2 13 14 syl2an2r A Clsd J B Clsd J A B Clsd J J A B J
16 8 15 mpbird A Clsd J B Clsd J A B Clsd J