| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0 |
|
| 2 |
|
uniiun |
|
| 3 |
|
simpl1 |
|
| 4 |
|
toponmax |
|
| 5 |
3 4
|
syl |
|
| 6 |
|
simpl2l |
|
| 7 |
5 6
|
ssexd |
|
| 8 |
|
simpl2r |
|
| 9 |
5 8
|
ssexd |
|
| 10 |
|
uniprg |
|
| 11 |
7 9 10
|
syl2anc |
|
| 12 |
2 11
|
eqtr3id |
|
| 13 |
12
|
oveq2d |
|
| 14 |
|
vex |
|
| 15 |
14
|
elpr |
|
| 16 |
|
simpl2 |
|
| 17 |
|
sseq1 |
|
| 18 |
17
|
biimprd |
|
| 19 |
|
sseq1 |
|
| 20 |
19
|
biimprd |
|
| 21 |
18 20
|
jaoa |
|
| 22 |
16 21
|
mpan9 |
|
| 23 |
15 22
|
sylan2b |
|
| 24 |
|
simpl3 |
|
| 25 |
|
elin |
|
| 26 |
24 25
|
sylib |
|
| 27 |
|
eleq2 |
|
| 28 |
27
|
biimprd |
|
| 29 |
|
eleq2 |
|
| 30 |
29
|
biimprd |
|
| 31 |
28 30
|
jaoa |
|
| 32 |
26 31
|
mpan9 |
|
| 33 |
15 32
|
sylan2b |
|
| 34 |
|
simpr |
|
| 35 |
|
oveq2 |
|
| 36 |
35
|
eleq1d |
|
| 37 |
36
|
biimprd |
|
| 38 |
|
oveq2 |
|
| 39 |
38
|
eleq1d |
|
| 40 |
39
|
biimprd |
|
| 41 |
37 40
|
jaoa |
|
| 42 |
34 41
|
mpan9 |
|
| 43 |
15 42
|
sylan2b |
|
| 44 |
3 23 33 43
|
iunconn |
|
| 45 |
13 44
|
eqeltrrd |
|
| 46 |
45
|
ex |
|
| 47 |
46
|
3expia |
|
| 48 |
47
|
exlimdv |
|
| 49 |
1 48
|
biimtrid |
|
| 50 |
49
|
3impia |
|