Metamath Proof Explorer


Theorem unconn

Description: The union of two connected overlapping subspaces is connected. (Contributed by FL, 29-May-2014) (Proof shortened by Mario Carneiro, 11-Jun-2014)

Ref Expression
Assertion unconn J TopOn X A X B X A B J 𝑡 A Conn J 𝑡 B Conn J 𝑡 A B Conn

Proof

Step Hyp Ref Expression
1 n0 A B x x A B
2 uniiun A B = k A B k
3 simpl1 J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn J TopOn X
4 toponmax J TopOn X X J
5 3 4 syl J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn X J
6 simpl2l J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn A X
7 5 6 ssexd J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn A V
8 simpl2r J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn B X
9 5 8 ssexd J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn B V
10 uniprg A V B V A B = A B
11 7 9 10 syl2anc J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn A B = A B
12 2 11 eqtr3id J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn k A B k = A B
13 12 oveq2d J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn J 𝑡 k A B k = J 𝑡 A B
14 vex k V
15 14 elpr k A B k = A k = B
16 simpl2 J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn A X B X
17 sseq1 k = A k X A X
18 17 biimprd k = A A X k X
19 sseq1 k = B k X B X
20 19 biimprd k = B B X k X
21 18 20 jaoa k = A k = B A X B X k X
22 16 21 mpan9 J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn k = A k = B k X
23 15 22 sylan2b J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn k A B k X
24 simpl3 J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn x A B
25 elin x A B x A x B
26 24 25 sylib J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn x A x B
27 eleq2 k = A x k x A
28 27 biimprd k = A x A x k
29 eleq2 k = B x k x B
30 29 biimprd k = B x B x k
31 28 30 jaoa k = A k = B x A x B x k
32 26 31 mpan9 J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn k = A k = B x k
33 15 32 sylan2b J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn k A B x k
34 simpr J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn J 𝑡 A Conn J 𝑡 B Conn
35 oveq2 k = A J 𝑡 k = J 𝑡 A
36 35 eleq1d k = A J 𝑡 k Conn J 𝑡 A Conn
37 36 biimprd k = A J 𝑡 A Conn J 𝑡 k Conn
38 oveq2 k = B J 𝑡 k = J 𝑡 B
39 38 eleq1d k = B J 𝑡 k Conn J 𝑡 B Conn
40 39 biimprd k = B J 𝑡 B Conn J 𝑡 k Conn
41 37 40 jaoa k = A k = B J 𝑡 A Conn J 𝑡 B Conn J 𝑡 k Conn
42 34 41 mpan9 J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn k = A k = B J 𝑡 k Conn
43 15 42 sylan2b J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn k A B J 𝑡 k Conn
44 3 23 33 43 iunconn J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn J 𝑡 k A B k Conn
45 13 44 eqeltrrd J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn J 𝑡 A B Conn
46 45 ex J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn J 𝑡 A B Conn
47 46 3expia J TopOn X A X B X x A B J 𝑡 A Conn J 𝑡 B Conn J 𝑡 A B Conn
48 47 exlimdv J TopOn X A X B X x x A B J 𝑡 A Conn J 𝑡 B Conn J 𝑡 A B Conn
49 1 48 syl5bi J TopOn X A X B X A B J 𝑡 A Conn J 𝑡 B Conn J 𝑡 A B Conn
50 49 3impia J TopOn X A X B X A B J 𝑡 A Conn J 𝑡 B Conn J 𝑡 A B Conn