Metamath Proof Explorer


Theorem uncov

Description: Value of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021)

Ref Expression
Assertion uncov A V B W A uncurry F B = F A B

Proof

Step Hyp Ref Expression
1 df-br A B uncurry F w A B w uncurry F
2 df-unc uncurry F = x y z | y F x z
3 2 eleq2i A B w uncurry F A B w x y z | y F x z
4 1 3 bitri A B uncurry F w A B w x y z | y F x z
5 vex w V
6 simp2 x = A y = B z = w y = B
7 fveq2 x = A F x = F A
8 7 3ad2ant1 x = A y = B z = w F x = F A
9 simp3 x = A y = B z = w z = w
10 6 8 9 breq123d x = A y = B z = w y F x z B F A w
11 10 eloprabga A V B W w V A B w x y z | y F x z B F A w
12 5 11 mp3an3 A V B W A B w x y z | y F x z B F A w
13 4 12 syl5bb A V B W A B uncurry F w B F A w
14 13 iotabidv A V B W ι w | A B uncurry F w = ι w | B F A w
15 df-ov A uncurry F B = uncurry F A B
16 df-fv uncurry F A B = ι w | A B uncurry F w
17 15 16 eqtri A uncurry F B = ι w | A B uncurry F w
18 df-fv F A B = ι w | B F A w
19 14 17 18 3eqtr4g A V B W A uncurry F B = F A B