Metamath Proof Explorer


Theorem unctb

Description: The union of two countable sets is countable. (Contributed by FL, 25-Aug-2006) (Proof shortened by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion unctb A ω B ω A B ω

Proof

Step Hyp Ref Expression
1 ctex A ω A V
2 ctex B ω B V
3 undjudom A V B V A B A ⊔︀ B
4 1 2 3 syl2an A ω B ω A B A ⊔︀ B
5 djudom1 A ω B V A ⊔︀ B ω ⊔︀ B
6 2 5 sylan2 A ω B ω A ⊔︀ B ω ⊔︀ B
7 simpr A ω B ω B ω
8 omex ω V
9 djudom2 B ω ω V ω ⊔︀ B ω ⊔︀ ω
10 7 8 9 sylancl A ω B ω ω ⊔︀ B ω ⊔︀ ω
11 domtr A ⊔︀ B ω ⊔︀ B ω ⊔︀ B ω ⊔︀ ω A ⊔︀ B ω ⊔︀ ω
12 6 10 11 syl2anc A ω B ω A ⊔︀ B ω ⊔︀ ω
13 8 8 xpex ω × ω V
14 xp2dju 2 𝑜 × ω = ω ⊔︀ ω
15 ordom Ord ω
16 2onn 2 𝑜 ω
17 ordelss Ord ω 2 𝑜 ω 2 𝑜 ω
18 15 16 17 mp2an 2 𝑜 ω
19 xpss1 2 𝑜 ω 2 𝑜 × ω ω × ω
20 18 19 ax-mp 2 𝑜 × ω ω × ω
21 14 20 eqsstrri ω ⊔︀ ω ω × ω
22 ssdomg ω × ω V ω ⊔︀ ω ω × ω ω ⊔︀ ω ω × ω
23 13 21 22 mp2 ω ⊔︀ ω ω × ω
24 xpomen ω × ω ω
25 domentr ω ⊔︀ ω ω × ω ω × ω ω ω ⊔︀ ω ω
26 23 24 25 mp2an ω ⊔︀ ω ω
27 domtr A ⊔︀ B ω ⊔︀ ω ω ⊔︀ ω ω A ⊔︀ B ω
28 12 26 27 sylancl A ω B ω A ⊔︀ B ω
29 domtr A B A ⊔︀ B A ⊔︀ B ω A B ω
30 4 28 29 syl2anc A ω B ω A B ω