Metamath Proof Explorer


Theorem undefval

Description: Value of the undefined value function. Normally we will not reference the explicit value but will use undefnel instead. (Contributed by NM, 15-Sep-2011) (Revised by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion undefval S V Undef S = 𝒫 S

Proof

Step Hyp Ref Expression
1 df-undef Undef = s V 𝒫 s
2 unieq s = S s = S
3 2 pweqd s = S 𝒫 s = 𝒫 S
4 elex S V S V
5 uniexg S V S V
6 5 pwexd S V 𝒫 S V
7 1 3 4 6 fvmptd3 S V Undef S = 𝒫 S