Metamath Proof Explorer


Theorem undi

Description: Distributive law for union over intersection. Exercise 11 of TakeutiZaring p. 17. (Contributed by NM, 30-Sep-2002) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion undi A B C = A B A C

Proof

Step Hyp Ref Expression
1 elin x B C x B x C
2 1 orbi2i x A x B C x A x B x C
3 ordi x A x B x C x A x B x A x C
4 elin x A B A C x A B x A C
5 elun x A B x A x B
6 elun x A C x A x C
7 5 6 anbi12i x A B x A C x A x B x A x C
8 4 7 bitr2i x A x B x A x C x A B A C
9 2 3 8 3bitri x A x B C x A B A C
10 9 uneqri A B C = A B A C