Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
undif
Next ⟩
ssdifin0
Metamath Proof Explorer
Ascii
Unicode
Theorem
undif
Description:
Union of complementary parts into whole.
(Contributed by
NM
, 22-Mar-1998)
Ref
Expression
Assertion
undif
⊢
A
⊆
B
↔
A
∪
B
∖
A
=
B
Proof
Step
Hyp
Ref
Expression
1
ssequn1
⊢
A
⊆
B
↔
A
∪
B
=
B
2
undif2
⊢
A
∪
B
∖
A
=
A
∪
B
3
2
eqeq1i
⊢
A
∪
B
∖
A
=
B
↔
A
∪
B
=
B
4
1
3
bitr4i
⊢
A
⊆
B
↔
A
∪
B
∖
A
=
B