Metamath Proof Explorer


Theorem undif3

Description: An equality involving class union and class difference. The first equality of Exercise 13 of TakeutiZaring p. 22. (Contributed by Alan Sare, 17-Apr-2012) (Proof shortened by JJ, 13-Jul-2021)

Ref Expression
Assertion undif3 A B C = A B C A

Proof

Step Hyp Ref Expression
1 elun x A B x A x B
2 pm4.53 ¬ x C ¬ x A ¬ x C x A
3 eldif x C A x C ¬ x A
4 2 3 xchnxbir ¬ x C A ¬ x C x A
5 1 4 anbi12i x A B ¬ x C A x A x B ¬ x C x A
6 eldif x A B C A x A B ¬ x C A
7 elun x A B C x A x B C
8 eldif x B C x B ¬ x C
9 8 orbi2i x A x B C x A x B ¬ x C
10 ordi x A x B ¬ x C x A x B x A ¬ x C
11 orcom x A ¬ x C ¬ x C x A
12 11 anbi2i x A x B x A ¬ x C x A x B ¬ x C x A
13 10 12 bitri x A x B ¬ x C x A x B ¬ x C x A
14 7 9 13 3bitri x A B C x A x B ¬ x C x A
15 5 6 14 3bitr4ri x A B C x A B C A
16 15 eqriv A B C = A B C A