Metamath Proof Explorer


Theorem undif3VD

Description: The first equality of Exercise 13 of TakeutiZaring p. 22. Virtual deduction proof of undif3 . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. undif3 is undif3VD without virtual deductions and was automatically derived from undif3VD .

1:: |- ( x e. ( A u. ( B \ C ) ) <-> ( x e. A \/ x e. ( B \ C ) ) )
2:: |- ( x e. ( B \ C ) <-> ( x e. B /\ -. x e. C ) )
3:2: |- ( ( x e. A \/ x e. ( B \ C ) ) <-> ( x e. A \/ ( x e. B /\ -. x e. C ) ) )
4:1,3: |- ( x e. ( A u. ( B \ C ) ) <-> ( x e. A \/ ( x e. B /\ -. x e. C ) ) )
5:: |- (. x e. A ->. x e. A ).
6:5: |- (. x e. A ->. ( x e. A \/ x e. B ) ).
7:5: |- (. x e. A ->. ( -. x e. C \/ x e. A ) ).
8:6,7: |- (. x e. A ->. ( ( x e. A \/ x e. B ) /\ ( -. x e. C \/ x e. A ) ) ).
9:8: |- ( x e. A -> ( ( x e. A \/ x e. B ) /\ ( -. x e. C \/ x e. A ) ) )
10:: |- (. ( x e. B /\ -. x e. C ) ->. ( x e. B /\ -. x e. C ) ).
11:10: |- (. ( x e. B /\ -. x e. C ) ->. x e. B ).
12:10: |- (. ( x e. B /\ -. x e. C ) ->. -. x e. C ).
13:11: |- (. ( x e. B /\ -. x e. C ) ->. ( x e. A \/ x e. B ) ).
14:12: |- (. ( x e. B /\ -. x e. C ) ->. ( -. x e. C \/ x e. A ) ).
15:13,14: |- (. ( x e. B /\ -. x e. C ) ->. ( ( x e. A \/ x e. B ) /\ ( -. x e. C \/ x e. A ) ) ).
16:15: |- ( ( x e. B /\ -. x e. C ) -> ( ( x e. A \/ x e. B ) /\ ( -. x e. C \/ x e. A ) ) )
17:9,16: |- ( ( x e. A \/ ( x e. B /\ -. x e. C ) ) -> ( ( x e. A \/ x e. B ) /\ ( -. x e. C \/ x e. A ) ) )
18:: |- (. ( x e. A /\ -. x e. C ) ->. ( x e. A /\ -. x e. C ) ).
19:18: |- (. ( x e. A /\ -. x e. C ) ->. x e. A ).
20:18: |- (. ( x e. A /\ -. x e. C ) ->. -. x e. C ).
21:18: |- (. ( x e. A /\ -. x e. C ) ->. ( x e. A \/ ( x e. B /\ -. x e. C ) ) ).
22:21: |- ( ( x e. A /\ -. x e. C ) -> ( x e. A \/ ( x e. B /\ -. x e. C ) ) )
23:: |- (. ( x e. A /\ x e. A ) ->. ( x e. A /\ x e. A ) ).
24:23: |- (. ( x e. A /\ x e. A ) ->. x e. A ).
25:24: |- (. ( x e. A /\ x e. A ) ->. ( x e. A \/ ( x e. B /\ -. x e. C ) ) ).
26:25: |- ( ( x e. A /\ x e. A ) -> ( x e. A \/ ( x e. B /\ -. x e. C ) ) )
27:10: |- (. ( x e. B /\ -. x e. C ) ->. ( x e. A \/ ( x e. B /\ -. x e. C ) ) ).
28:27: |- ( ( x e. B /\ -. x e. C ) -> ( x e. A \/ ( x e. B /\ -. x e. C ) ) )
29:: |- (. ( x e. B /\ x e. A ) ->. ( x e. B /\ x e. A ) ).
30:29: |- (. ( x e. B /\ x e. A ) ->. x e. A ).
31:30: |- (. ( x e. B /\ x e. A ) ->. ( x e. A \/ ( x e. B /\ -. x e. C ) ) ).
32:31: |- ( ( x e. B /\ x e. A ) -> ( x e. A \/ ( x e. B /\ -. x e. C ) ) )
33:22,26: |- ( ( ( x e. A /\ -. x e. C ) \/ ( x e. A /\ x e. A ) ) -> ( x e. A \/ ( x e. B /\ -. x e. C ) ) )
34:28,32: |- ( ( ( x e. B /\ -. x e. C ) \/ ( x e. B /\ x e. A ) ) -> ( x e. A \/ ( x e. B /\ -. x e. C ) ) )
35:33,34: |- ( ( ( ( x e. A /\ -. x e. C ) \/ ( x e. A /\ x e. A ) ) \/ ( ( x e. B /\ -. x e. C ) \/ ( x e. B /\ x e. A ) ) ) -> ( x e. A \/ ( x e. B /\ -. x e. C ) ) )
36:: |- ( ( ( ( x e. A /\ -. x e. C ) \/ ( x e. A /\ x e. A ) ) \/ ( ( x e. B /\ -. x e. C ) \/ ( x e. B /\ x e. A ) ) ) <-> ( ( x e. A \/ x e. B ) /\ ( -. x e. C \/ x e. A ) ) )
37:36,35: |- ( ( ( x e. A \/ x e. B ) /\ ( -. x e. C \/ x e. A ) ) -> ( x e. A \/ ( x e. B /\ -. x e. C ) ) )
38:17,37: |- ( ( x e. A \/ ( x e. B /\ -. x e. C ) ) <-> ( ( x e. A \/ x e. B ) /\ ( -. x e. C \/ x e. A ) ) )
39:: |- ( x e. ( C \ A ) <-> ( x e. C /\ -. x e. A ) )
40:39: |- ( -. x e. ( C \ A ) <-> -. ( x e. C /\ -. x e. A ) )
41:: |- ( -. ( x e. C /\ -. x e. A ) <-> ( -. x e. C \/ x e. A ) )
42:40,41: |- ( -. x e. ( C \ A ) <-> ( -. x e. C \/ x e. A ) )
43:: |- ( x e. ( A u. B ) <-> ( x e. A \/ x e. B ) )
44:43,42: |- ( ( x e. ( A u. B ) /\ -. x e. ( C \ A ) ) <-> ( ( x e. A \/ x e. B ) /\ ( -. x e. C /\ x e. A ) ) )
45:: |- ( x e. ( ( A u. B ) \ ( C \ A ) ) <-> ( x e. ( A u. B ) /\ -. x e. ( C \ A ) ) )
46:45,44: |- ( x e. ( ( A u. B ) \ ( C \ A ) ) <-> ( ( x e. A \/ x e. B ) /\ ( -. x e. C \/ x e. A ) ) )
47:4,38: |- ( x e. ( A u. ( B \ C ) ) <-> ( ( x e. A \/ x e. B ) /\ ( -. x e. C \/ x e. A ) ) )
48:46,47: |- ( x e. ( A u. ( B \ C ) ) <-> x e. ( ( A u. B ) \ ( C \ A ) ) )
49:48: |- A. x ( x e. ( A u. ( B \ C ) ) <-> x e. ( ( A u. B ) \ ( C \ A ) ) )
qed:49: |- ( A u. ( B \ C ) ) = ( ( A u. B ) \ ( C \ A ) )
(Contributed by Alan Sare, 17-Apr-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion undif3VD A B C = A B C A

Proof

Step Hyp Ref Expression
1 elun x A B C x A x B C
2 eldif x B C x B ¬ x C
3 2 orbi2i x A x B C x A x B ¬ x C
4 1 3 bitri x A B C x A x B ¬ x C
5 idn1 x A x A
6 orc x A x A x B
7 5 6 e1a x A x A x B
8 olc x A ¬ x C x A
9 5 8 e1a x A ¬ x C x A
10 pm3.2 x A x B ¬ x C x A x A x B ¬ x C x A
11 7 9 10 e11 x A x A x B ¬ x C x A
12 11 in1 x A x A x B ¬ x C x A
13 idn1 x B ¬ x C x B ¬ x C
14 simpl x B ¬ x C x B
15 13 14 e1a x B ¬ x C x B
16 olc x B x A x B
17 15 16 e1a x B ¬ x C x A x B
18 simpr x B ¬ x C ¬ x C
19 13 18 e1a x B ¬ x C ¬ x C
20 orc ¬ x C ¬ x C x A
21 19 20 e1a x B ¬ x C ¬ x C x A
22 17 21 10 e11 x B ¬ x C x A x B ¬ x C x A
23 22 in1 x B ¬ x C x A x B ¬ x C x A
24 12 23 jaoi x A x B ¬ x C x A x B ¬ x C x A
25 anddi x A x B ¬ x C x A x A ¬ x C x A x A x B ¬ x C x B x A
26 25 bicomi x A ¬ x C x A x A x B ¬ x C x B x A x A x B ¬ x C x A
27 idn1 x A ¬ x C x A ¬ x C
28 simpl x A ¬ x C x A
29 28 orcd x A ¬ x C x A x B ¬ x C
30 27 29 e1a x A ¬ x C x A x B ¬ x C
31 30 in1 x A ¬ x C x A x B ¬ x C
32 idn1 x A x A x A x A
33 simpl x A x A x A
34 32 33 e1a x A x A x A
35 orc x A x A x B ¬ x C
36 34 35 e1a x A x A x A x B ¬ x C
37 36 in1 x A x A x A x B ¬ x C
38 31 37 jaoi x A ¬ x C x A x A x A x B ¬ x C
39 olc x B ¬ x C x A x B ¬ x C
40 13 39 e1a x B ¬ x C x A x B ¬ x C
41 40 in1 x B ¬ x C x A x B ¬ x C
42 idn1 x B x A x B x A
43 simpr x B x A x A
44 42 43 e1a x B x A x A
45 44 35 e1a x B x A x A x B ¬ x C
46 45 in1 x B x A x A x B ¬ x C
47 41 46 jaoi x B ¬ x C x B x A x A x B ¬ x C
48 38 47 jaoi x A ¬ x C x A x A x B ¬ x C x B x A x A x B ¬ x C
49 26 48 sylbir x A x B ¬ x C x A x A x B ¬ x C
50 24 49 impbii x A x B ¬ x C x A x B ¬ x C x A
51 4 50 bitri x A B C x A x B ¬ x C x A
52 eldif x A B C A x A B ¬ x C A
53 elun x A B x A x B
54 eldif x C A x C ¬ x A
55 54 notbii ¬ x C A ¬ x C ¬ x A
56 pm4.53 ¬ x C ¬ x A ¬ x C x A
57 55 56 bitri ¬ x C A ¬ x C x A
58 53 57 anbi12i x A B ¬ x C A x A x B ¬ x C x A
59 52 58 bitri x A B C A x A x B ¬ x C x A
60 51 59 bitr4i x A B C x A B C A
61 60 ax-gen x x A B C x A B C A
62 dfcleq A B C = A B C A x x A B C x A B C A
63 62 biimpri x x A B C x A B C A A B C = A B C A
64 61 63 e0a A B C = A B C A