Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
undifabs
Next ⟩
inundif
Metamath Proof Explorer
Ascii
Unicode
Theorem
undifabs
Description:
Absorption of difference by union.
(Contributed by
NM
, 18-Aug-2013)
Ref
Expression
Assertion
undifabs
⊢
A
∪
A
∖
B
=
A
Proof
Step
Hyp
Ref
Expression
1
undif3
⊢
A
∪
A
∖
B
=
A
∪
A
∖
B
∖
A
2
unidm
⊢
A
∪
A
=
A
3
2
difeq1i
⊢
A
∪
A
∖
B
∖
A
=
A
∖
B
∖
A
4
difdif
⊢
A
∖
B
∖
A
=
A
5
1
3
4
3eqtri
⊢
A
∪
A
∖
B
=
A