Metamath Proof Explorer


Theorem undifixp

Description: Union of two projections of a cartesian product. (Contributed by FL, 7-Nov-2011)

Ref Expression
Assertion undifixp FxBCGxABCBAFGxAC

Proof

Step Hyp Ref Expression
1 unexg FxBCGxABCFGV
2 1 3adant3 FxBCGxABCBAFGV
3 ixpfn GxABCGFnAB
4 ixpfn FxBCFFnB
5 3simpa GFnABFFnBBAGFnABFFnB
6 5 ancomd GFnABFFnBBAFFnBGFnAB
7 disjdif BAB=
8 fnun FFnBGFnABBAB=FGFnBAB
9 6 7 8 sylancl GFnABFFnBBAFGFnBAB
10 undif BABAB=A
11 10 biimpi BABAB=A
12 11 eqcomd BAA=BAB
13 12 3ad2ant3 GFnABFFnBBAA=BAB
14 13 fneq2d GFnABFFnBBAFGFnAFGFnBAB
15 9 14 mpbird GFnABFFnBBAFGFnA
16 15 3exp GFnABFFnBBAFGFnA
17 3 4 16 syl2imc FxBCGxABCBAFGFnA
18 17 3imp FxBCGxABCBAFGFnA
19 elixp2 FxBCFVFFnBxBFxC
20 19 simp3bi FxBCxBFxC
21 fndm GFnABdomG=AB
22 elndif xB¬xAB
23 eleq2 AB=domGxABxdomG
24 23 notbid AB=domG¬xAB¬xdomG
25 24 eqcoms domG=AB¬xAB¬xdomG
26 ndmfv ¬xdomGGx=
27 25 26 syl6bi domG=AB¬xABGx=
28 21 22 27 syl2im GFnABxBGx=
29 28 ralrimiv GFnABxBGx=
30 uneq2 Gx=FxGx=Fx
31 un0 Fx=Fx
32 eqtr FxGx=FxFx=FxFxGx=Fx
33 eleq1 Fx=FxGxFxCFxGxC
34 33 biimpd Fx=FxGxFxCFxGxC
35 34 eqcoms FxGx=FxFxCFxGxC
36 32 35 syl FxGx=FxFx=FxFxCFxGxC
37 30 31 36 sylancl Gx=FxCFxGxC
38 37 com12 FxCGx=FxGxC
39 38 ral2imi xBFxCxBGx=xBFxGxC
40 20 29 39 syl2imc GFnABFxBCxBFxGxC
41 3 40 syl GxABCFxBCxBFxGxC
42 41 impcom FxBCGxABCxBFxGxC
43 elixp2 GxABCGVGFnABxABGxC
44 43 simp3bi GxABCxABGxC
45 fndm FFnBdomF=B
46 eldifn xAB¬xB
47 eleq2 B=domFxBxdomF
48 47 notbid B=domF¬xB¬xdomF
49 ndmfv ¬xdomFFx=
50 48 49 syl6bi B=domF¬xBFx=
51 50 eqcoms domF=B¬xBFx=
52 45 46 51 syl2im FFnBxABFx=
53 52 ralrimiv FFnBxABFx=
54 uneq1 Fx=FxGx=Gx
55 uncom Gx=Gx
56 eqtr FxGx=GxGx=GxFxGx=Gx
57 un0 Gx=Gx
58 eqtr FxGx=GxGx=GxFxGx=Gx
59 eleq1 Gx=FxGxGxCFxGxC
60 59 biimpd Gx=FxGxGxCFxGxC
61 60 eqcoms FxGx=GxGxCFxGxC
62 58 61 syl FxGx=GxGx=GxGxCFxGxC
63 56 57 62 sylancl FxGx=GxGx=GxGxCFxGxC
64 54 55 63 sylancl Fx=GxCFxGxC
65 64 com12 GxCFx=FxGxC
66 65 ral2imi xABGxCxABFx=xABFxGxC
67 44 53 66 syl2imc FFnBGxABCxABFxGxC
68 4 67 syl FxBCGxABCxABFxGxC
69 68 imp FxBCGxABCxABFxGxC
70 ralunb xBABFxGxCxBFxGxCxABFxGxC
71 42 69 70 sylanbrc FxBCGxABCxBABFxGxC
72 71 ex FxBCGxABCxBABFxGxC
73 raleq A=BABxAFxGxCxBABFxGxC
74 73 imbi2d A=BABGxABCxAFxGxCGxABCxBABFxGxC
75 72 74 imbitrrid A=BABFxBCGxABCxAFxGxC
76 75 eqcoms BAB=AFxBCGxABCxAFxGxC
77 10 76 sylbi BAFxBCGxABCxAFxGxC
78 77 3imp231 FxBCGxABCBAxAFxGxC
79 df-fn GFnABFunGdomG=AB
80 df-fn FFnBFunFdomF=B
81 simpl FunFdomF=BFunF
82 simpl FunGdomG=ABFunG
83 81 82 anim12i FunFdomF=BFunGdomG=ABFunFFunG
84 83 3adant3 FunFdomF=BFunGdomG=ABBAFunFFunG
85 ineq12 domF=BdomG=ABdomFdomG=BAB
86 85 7 eqtrdi domF=BdomG=ABdomFdomG=
87 86 ad2ant2l FunFdomF=BFunGdomG=ABdomFdomG=
88 87 3adant3 FunFdomF=BFunGdomG=ABBAdomFdomG=
89 fvun FunFFunGdomFdomG=FGx=FxGx
90 84 88 89 syl2anc FunFdomF=BFunGdomG=ABBAFGx=FxGx
91 90 eleq1d FunFdomF=BFunGdomG=ABBAFGxCFxGxC
92 91 ralbidv FunFdomF=BFunGdomG=ABBAxAFGxCxAFxGxC
93 92 3exp FunFdomF=BFunGdomG=ABBAxAFGxCxAFxGxC
94 80 93 sylbi FFnBFunGdomG=ABBAxAFGxCxAFxGxC
95 94 com12 FunGdomG=ABFFnBBAxAFGxCxAFxGxC
96 79 95 sylbi GFnABFFnBBAxAFGxCxAFxGxC
97 3 4 96 syl2imc FxBCGxABCBAxAFGxCxAFxGxC
98 97 3imp FxBCGxABCBAxAFGxCxAFxGxC
99 78 98 mpbird FxBCGxABCBAxAFGxC
100 elixp2 FGxACFGVFGFnAxAFGxC
101 2 18 99 100 syl3anbrc FxBCGxABCBAFGxAC