Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
undisj1
Next ⟩
undisj2
Metamath Proof Explorer
Ascii
Unicode
Theorem
undisj1
Description:
The union of disjoint classes is disjoint.
(Contributed by
NM
, 26-Sep-2004)
Ref
Expression
Assertion
undisj1
⊢
A
∩
C
=
∅
∧
B
∩
C
=
∅
↔
A
∪
B
∩
C
=
∅
Proof
Step
Hyp
Ref
Expression
1
un00
⊢
A
∩
C
=
∅
∧
B
∩
C
=
∅
↔
A
∩
C
∪
B
∩
C
=
∅
2
indir
⊢
A
∪
B
∩
C
=
A
∩
C
∪
B
∩
C
3
2
eqeq1i
⊢
A
∪
B
∩
C
=
∅
↔
A
∩
C
∪
B
∩
C
=
∅
4
1
3
bitr4i
⊢
A
∩
C
=
∅
∧
B
∩
C
=
∅
↔
A
∪
B
∩
C
=
∅