Metamath Proof Explorer


Theorem undjudom

Description: Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004) (Revised by Jim Kingdon, 15-Aug-2023)

Ref Expression
Assertion undjudom A V B W A B A ⊔︀ B

Proof

Step Hyp Ref Expression
1 0ex V
2 xpsnen2g V A V × A A
3 1 2 mpan A V × A A
4 ensym × A A A × A
5 endom A × A A × A
6 3 4 5 3syl A V A × A
7 1on 1 𝑜 On
8 xpsnen2g 1 𝑜 On B W 1 𝑜 × B B
9 7 8 mpan B W 1 𝑜 × B B
10 ensym 1 𝑜 × B B B 1 𝑜 × B
11 endom B 1 𝑜 × B B 1 𝑜 × B
12 9 10 11 3syl B W B 1 𝑜 × B
13 xp01disjl × A 1 𝑜 × B =
14 undom A × A B 1 𝑜 × B × A 1 𝑜 × B = A B × A 1 𝑜 × B
15 13 14 mpan2 A × A B 1 𝑜 × B A B × A 1 𝑜 × B
16 6 12 15 syl2an A V B W A B × A 1 𝑜 × B
17 df-dju A ⊔︀ B = × A 1 𝑜 × B
18 16 17 breqtrrdi A V B W A B A ⊔︀ B