Step |
Hyp |
Ref |
Expression |
1 |
|
reldom |
|
2 |
1
|
brrelex2i |
|
3 |
|
domeng |
|
4 |
2 3
|
syl |
|
5 |
4
|
ibi |
|
6 |
1
|
brrelex1i |
|
7 |
|
difss |
|
8 |
|
ssdomg |
|
9 |
6 7 8
|
mpisyl |
|
10 |
|
domtr |
|
11 |
9 10
|
mpancom |
|
12 |
1
|
brrelex2i |
|
13 |
|
domeng |
|
14 |
12 13
|
syl |
|
15 |
14
|
ibi |
|
16 |
11 15
|
syl |
|
17 |
5 16
|
anim12i |
|
18 |
17
|
adantr |
|
19 |
|
exdistrv |
|
20 |
|
simprll |
|
21 |
|
simprrl |
|
22 |
|
disjdif |
|
23 |
22
|
a1i |
|
24 |
|
ss2in |
|
25 |
24
|
ad2ant2l |
|
26 |
25
|
adantl |
|
27 |
|
simplr |
|
28 |
|
sseq0 |
|
29 |
26 27 28
|
syl2anc |
|
30 |
|
undif2 |
|
31 |
|
unen |
|
32 |
30 31
|
eqbrtrrid |
|
33 |
20 21 23 29 32
|
syl22anc |
|
34 |
2
|
ad3antrrr |
|
35 |
1
|
brrelex2i |
|
36 |
35
|
ad3antlr |
|
37 |
|
unexg |
|
38 |
34 36 37
|
syl2anc |
|
39 |
|
unss12 |
|
40 |
39
|
ad2ant2l |
|
41 |
40
|
adantl |
|
42 |
|
ssdomg |
|
43 |
38 41 42
|
sylc |
|
44 |
|
endomtr |
|
45 |
33 43 44
|
syl2anc |
|
46 |
45
|
ex |
|
47 |
46
|
exlimdvv |
|
48 |
19 47
|
syl5bir |
|
49 |
18 48
|
mpd |
|