| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reldom |
|
| 2 |
1
|
brrelex2i |
|
| 3 |
|
domeng |
|
| 4 |
2 3
|
syl |
|
| 5 |
4
|
ibi |
|
| 6 |
1
|
brrelex1i |
|
| 7 |
|
difss |
|
| 8 |
|
ssdomg |
|
| 9 |
6 7 8
|
mpisyl |
|
| 10 |
|
domtr |
|
| 11 |
9 10
|
mpancom |
|
| 12 |
1
|
brrelex2i |
|
| 13 |
|
domeng |
|
| 14 |
12 13
|
syl |
|
| 15 |
14
|
ibi |
|
| 16 |
11 15
|
syl |
|
| 17 |
5 16
|
anim12i |
|
| 18 |
17
|
adantr |
|
| 19 |
|
exdistrv |
|
| 20 |
|
simprll |
|
| 21 |
|
simprrl |
|
| 22 |
|
disjdif |
|
| 23 |
22
|
a1i |
|
| 24 |
|
ss2in |
|
| 25 |
24
|
ad2ant2l |
|
| 26 |
25
|
adantl |
|
| 27 |
|
simplr |
|
| 28 |
|
sseq0 |
|
| 29 |
26 27 28
|
syl2anc |
|
| 30 |
|
undif2 |
|
| 31 |
|
unen |
|
| 32 |
30 31
|
eqbrtrrid |
|
| 33 |
20 21 23 29 32
|
syl22anc |
|
| 34 |
2
|
ad3antrrr |
|
| 35 |
1
|
brrelex2i |
|
| 36 |
35
|
ad3antlr |
|
| 37 |
|
unexg |
|
| 38 |
34 36 37
|
syl2anc |
|
| 39 |
|
unss12 |
|
| 40 |
39
|
ad2ant2l |
|
| 41 |
40
|
adantl |
|
| 42 |
|
ssdomg |
|
| 43 |
38 41 42
|
sylc |
|
| 44 |
|
endomtr |
|
| 45 |
33 43 44
|
syl2anc |
|
| 46 |
45
|
ex |
|
| 47 |
46
|
exlimdvv |
|
| 48 |
19 47
|
biimtrrid |
|
| 49 |
18 48
|
mpd |
|