| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uncom |  | 
						
							| 2 |  | eqtr |  | 
						
							| 3 | 2 | eqcomd |  | 
						
							| 4 |  | difeq1 |  | 
						
							| 5 |  | difun2 |  | 
						
							| 6 |  | eqtr |  | 
						
							| 7 |  | incom |  | 
						
							| 8 | 7 | eqeq1i |  | 
						
							| 9 |  | disj3 |  | 
						
							| 10 | 8 9 | bitri |  | 
						
							| 11 |  | eqtr |  | 
						
							| 12 | 11 | expcom |  | 
						
							| 13 | 12 | eqcoms |  | 
						
							| 14 | 10 13 | sylbi |  | 
						
							| 15 | 6 14 | syl5com |  | 
						
							| 16 | 4 5 15 | sylancl |  | 
						
							| 17 | 3 16 | syl |  | 
						
							| 18 | 1 17 | mpan |  | 
						
							| 19 | 18 | com12 |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 |  | simpl |  | 
						
							| 22 |  | difssd |  | 
						
							| 23 |  | sseq1 |  | 
						
							| 24 | 22 23 | mpbid |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 | 21 25 | unssd |  | 
						
							| 27 |  | eqimss |  | 
						
							| 28 |  | ssundif |  | 
						
							| 29 | 27 28 | sylibr |  | 
						
							| 30 | 29 | adantl |  | 
						
							| 31 | 26 30 | eqssd |  | 
						
							| 32 | 31 | ex |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 | 20 33 | impbid |  |