Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
The union of two classes
uneqri
Next ⟩
unidm
Metamath Proof Explorer
Ascii
Unicode
Theorem
uneqri
Description:
Inference from membership to union.
(Contributed by
NM
, 21-Jun-1993)
Ref
Expression
Hypothesis
uneqri.1
⊢
x
∈
A
∨
x
∈
B
↔
x
∈
C
Assertion
uneqri
⊢
A
∪
B
=
C
Proof
Step
Hyp
Ref
Expression
1
uneqri.1
⊢
x
∈
A
∨
x
∈
B
↔
x
∈
C
2
elun
⊢
x
∈
A
∪
B
↔
x
∈
A
∨
x
∈
B
3
2
1
bitri
⊢
x
∈
A
∪
B
↔
x
∈
C
4
3
eqriv
⊢
A
∪
B
=
C