Metamath Proof Explorer
Description: The union of two sets is a set. Corollary 5.8 of TakeutiZaring p. 16.
(Contributed by NM, 1-Jul-1994)
|
|
Ref |
Expression |
|
Hypotheses |
unex.1 |
|
|
|
unex.2 |
|
|
Assertion |
unex |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unex.1 |
|
| 2 |
|
unex.2 |
|
| 3 |
|
unexg |
|
| 4 |
1 2 3
|
mp2an |
|