Metamath Proof Explorer
Description: The union of two sets is a set. Corollary 5.8 of TakeutiZaring p. 16.
(Contributed by NM, 1-Jul-1994)
|
|
Ref |
Expression |
|
Hypotheses |
unex.1 |
|
|
|
unex.2 |
|
|
Assertion |
unex |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
unex.1 |
|
2 |
|
unex.2 |
|
3 |
1 2
|
unipr |
|
4 |
|
prex |
|
5 |
4
|
uniex |
|
6 |
3 5
|
eqeltrri |
|